Cross-view geo-localization aims to estimate the location of a query ground image by matching it to a reference geo-tagged aerial images database. As an extremely challenging task, its difficulties root in the drastic view changes and different capturing time between two views. Despite these difficulties, recent works achieve outstanding progress on cross-view geo-localization benchmarks. However, existing methods still suffer from poor performance on the cross-area benchmarks, in which the training and testing data are captured from two different regions. We attribute this deficiency to the lack of ability to extract the spatial configuration of visual feature layouts and models' overfitting on low-level details from the training set. In this paper, we propose GeoDTR which explicitly disentangles geometric information from raw features and learns the spatial correlations among visual features from aerial and ground pairs with a novel geometric layout extractor module. This module generates a set of geometric layout descriptors, modulating the raw features and producing high-quality latent representations. In addition, we elaborate on two categories of data augmentations, (i) Layout simulation, which varies the spatial configuration while keeping the low-level details intact. (ii) Semantic augmentation, which alters the low-level details and encourages the model to capture spatial configurations. These augmentations help to improve the performance of the cross-view geo-localization models, especially on the cross-area benchmarks. Moreover, we propose a counterfactual-based learning process to benefit the geometric layout extractor in exploring spatial information. Extensive experiments show that GeoDTR not only achieves state-of-the-art results but also significantly boosts the performance on same-area and cross-area benchmarks. Our code can be found at https://gitlab.com/vail-uvm/geodtr.
more »
« less
This content will become publicly available on November 25, 2025
VEMIC: View-aware Entropy model for Multi-view Image Compression
With the ever-increasing amount of 3D data being captured and processed, multi-view image compression is essential to various applications, including virtual reality and 3D modeling. Despite the considerable success of learning-based compression models on single images, limited progress has been made in multi-view image compression. In this paper, we propose an efficient approach to multi-view image compression by leveraging the redundant information across different viewpoints without explicitly using warping operations or camera parameters. Our method builds upon the recent advancements in Multi-Reference Entropy Models (MEM), which were initially proposed to capture correlations within an image. We extend the MEM models to employ cross-view correlations in addition to within-image correlations. Specifically, we generate latent representations for each view independently and integrate a cross-view context module within the entropy model. The estimation of entropy parameters for each view follows an autoregressive technique, leveraging correlations with the previous views. We show that adding this view context module further enhances the compression performance when jointly trained with the autoencoder. Experimental results demonstrate superior performance compared to both traditional and learning-based multi-view compression methods.
more »
« less
- Award ID(s):
- 2235050
- PAR ID:
- 10595451
- Publisher / Repository:
- 35th British Machine Vision Conference 2024, BMVC 2024, The British Machine Vision Association and Society for Pattern Recognition
- Date Published:
- Page Range / eLocation ID:
- 0606
- Format(s):
- Medium: X
- Location:
- Glasgow, UK
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Synthetic data is highly useful for training machine learning systems performing image-based 3D reconstruction, as synthetic data has applications in both extending existing generalizable datasets and being tailored to train neural networks for specific learning tasks of interest. In this paper, we introduce and utilize a synthetic data generation suite capable of generating data given existing 3D scene models as input. Specifically, we use our tool to generate image sequences for use with Multi-View Stereo (MVS), moving a camera through the virtual space according to user-chosen camera parameters. We evaluate how the given camera parameters and type of 3D environment affect how applicable the generated image sequences are to the MVS task using five pre-trained neural networks on image sequences generated from three different 3D scene datasets. We obtain generated predictions for each combination of parameter value and input image sequence, using standard error metrics to analyze the differences in depth predictions on image sequences across 3D datasets, parameters, and networks. Among other results, we find that camera height and vertical camera viewing angle are the parameters that cause the most variation in depth prediction errors on these image sequences.more » « less
-
Transform and entropy models are the two core components in deep image compression neural networks. Most existing learning-based image compression methods utilize convolutional-based transform, which lacks the ability to model long-range dependencies, primarily due to the limited receptive field of the convolution operation. To address this limitation, we propose a Transformer-based nonlinear transform. This transform has the remarkable ability to efficiently capture both local and global information from the input image, leading to a more decorrelated latent representation. In addition, we introduce a novel entropy model that incorporates two different hyperpriors to model cross-channel and spatial dependencies of the latent representation. To further improve the entropy model, we add a global context that leverages distant relationships to predict the current latent more accurately. This global context employs a causal attention mechanism to extract long-range information in a content-dependent manner. Our experiments show that our proposed framework performs better than the state-of-the-art methods in terms of rate-distortion performance.more » « less
-
null (Ed.)The success of supervised learning requires large-scale ground truth labels which are very expensive, time- consuming, or may need special skills to annotate. To address this issue, many self- or un-supervised methods are developed. Unlike most existing self-supervised methods to learn only 2D image features or only 3D point cloud features, this paper presents a novel and effective self-supervised learning approach to jointly learn both 2D image features and 3D point cloud features by exploiting cross-modality and cross-view correspondences without using any human annotated labels. Specifically, 2D image features of rendered images from different views are extracted by a 2D convolutional neural network, and 3D point cloud features are extracted by a graph convolution neural network. Two types of features are fed into a two-layer fully connected neural network to estimate the cross-modality correspondence. The three networks are jointly trained (i.e. cross-modality) by verifying whether two sampled data of different modalities belong to the same object, meanwhile, the 2D convolutional neural network is additionally optimized through minimizing intra-object distance while maximizing inter-object distance of rendered images in different views (i.e. cross-view). The effectiveness of the learned 2D and 3D features is evaluated by transferring them on five different tasks including multi-view 2D shape recognition, 3D shape recognition, multi-view 2D shape retrieval, 3D shape retrieval, and 3D part-segmentation. Extensive evaluations on all the five different tasks across different datasets demonstrate strong generalization and effectiveness of the learned 2D and 3D features by the proposed self-supervised method.more » « less
-
Recent volumetric 3D reconstruction methods can produce very accurate results, with plausible geometry even for unobserved surfaces. However, they face an undesirable trade-off when it comes to multi-view fusion. They can fuse all available view information by global averaging, thus losing fine detail, or they can heuristically cluster views for local fusion, thus restricting their ability to consider all views jointly. Our key insight is that greater detail can be retained without restricting view diversity by learning a view-fusion function conditioned on camera pose and image content. We propose to learn this multi-view fusion using a transformer. To this end, we introduce VoRTX, 1 an end-to-end volumetric 3D reconstruction network using transformers for wide-baseline, multi-view feature fusion. Our model is occlusion-aware, leveraging the transformer architecture to predict an initial, projective scene geometry estimate. This estimate is used to avoid back-projecting image features through surfaces into occluded regions. We train our model on ScanNet and show that it produces better reconstructions than state-of-the-art methods. We also demonstrate generalization without any fine-tuning, outperforming the same state-of-the-art methods on two other datasets, TUM-RGBD and ICL-NUIM.more » « less
An official website of the United States government
