Abstract Printed 2D materials, derived from solution‐processed inks, offer scalable and cost‐effective routes to mechanically flexible optoelectronics. With micrometer‐scale control and broad processing latitude, aerosol‐jet printing (AJP) is of particular interest for all‐printed circuits and systems. Here, AJP is utilized to achieve ultrahigh‐responsivity photodetectors consisting of well‐aligned, percolating networks of semiconducting MoS2nanosheets and graphene electrodes on flexible polyimide substrates. Ultrathin (≈1.2 nm thick) and high‐aspect‐ratio (≈1 μm lateral size) MoS2nanosheets are obtained by electrochemical intercalation followed by megasonic atomization during AJP, which not only aerosolizes the inks but also further exfoliates the nanosheets. The incorporation of the high‐boiling‐point solvent terpineol into the MoS2ink is critical for achieving a highly aligned and flat thin‐film morphology following AJP as confirmed by grazing‐incidence wide‐angle X‐ray scattering and atomic force microscopy. Following AJP, curing is achieved with photonic annealing, which yields quasi‐ohmic contacts and photoactive channels with responsivities exceeding 103 A W−1that outperform previously reported all‐printed visible‐light photodetectors by over three orders of magnitude. Megasonic exfoliation coupled with properly designed AJP ink formulations enables the superlative optoelectronic properties of ultrathin MoS2nanosheets to be preserved and exploited for the scalable additive manufacturing of mechanically flexible optoelectronics. 
                        more » 
                        « less   
                    
                            
                            StableTi 3 C 2 T x MXene Ink Formulation and High‐Resolution Aerosol Jet Printing for High‐Performance MXene Supercapacitors
                        
                    
    
            Abstract Lightweight energy storage devices are essential for developing compact wearable and distributed electronics, and additive manufacturing offers a scalable, low‐cost approach to fabricating such devices with complex geometries. However, additive manufacturing of high‐performance, on‐demand energy storage devices remains challenging due to the need for stable, multifunctional nanomaterial inks. Herein, the development of 2‐dimensional (2D) titanium carbide (Ti3C2TxMXene) ink that is compatible with aerosol jet printing for energy storage applications is demonstrated. The developed MXene ink demonstrates long‐term chemical and physical stability, ensuring consistent printability and achieving high‐resolution prints (≈45 µm width lines) with minimal overspray. The high‐resolution aerosol‐jet printed MXene supercapacitor achieves an areal capacitance of 122 mF cm−2and a volumetric capacitance of 611 F cm−3, placing them among the highest‐performing printed supercapacitors reported to date. These findings highlight the potential of aerosol jet printing with MXene inks for on‐demand, scalable, and cost‐effective fabrication of printed electronic and electrochemical devices. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2113873
- PAR ID:
- 10595782
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small Methods
- ISSN:
- 2366-9608
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Flexible thermoelectric (TE) devices hold great promise for energy harvesting and cooling applications, with increasing significance to serve as perpetual power sources for flexible electronics and wearable devices. Despite unique and superior TE properties widely reported in nanocrystals, transforming these nanocrystals into flexible and functional forms remains a major challenge. Herein, demonstrated is a transformative 3D conformal aerosol jet printing and rapid photonic sintering process to print and sinter solution‐processed Bi2Te2.7Se0.3nanoplate inks onto virtually any flexible substrates. Within seconds of photonic sintering, the electrical conductivity of the printed film is dramatically improved from nonconductive to 2.7 × 104S m−1. The films demonstrate a room temperature power factor of 730 µW m−1K−2, which is among the highest values reported in flexible TE films. Additionally, the film shows negligible performance changes after 500 bending cycles. The highly scalable and low‐cost fabrication process paves the way for large‐scale manufacturing of flexible devices using a variety of high‐performing nanoparticle inks.more » « less
- 
            Abstract Over the past several years, atomically thin two‐dimensional carbides, nitrides, and carbonitrides, otherwise known asMXenes, have been expanded into over fifty material candidates that are experimentally produced, and over one hundred fifty more candidates that have been theoretically predicted. They have demonstrated transformative properties such as metallic‐type electrical conductivities, optical properties such as plasmonics and optical nonlinearity, and key surface properties such as hydrophilicity, and unique surface chemistry. In terms of their applications, they are poised to transform technological areas such as energy storage, electromagnetic shielding, electronics, photonics, optoelectronics, sensing, and bioelectronics. One of the most promising aspects ofMXene'sfuture application in all the above areas of interest, we believe, is reliably developing their flexible and bendable electronics and optoelectronics by printing methods (henceforth, termed asprinted flexible MXetronics). Designing and manipulatingMXeneconductive inks according to the application requirements will therefore be a transformative goal for future printed flexible MXetronics.MXene'scombined property of high electrical conductivity and water‐friendly nature to easily disperse its micro/nano‐flakes in an aqueous medium without any binder paves the way for designing additive‐free highly conductiveMXene ink. However, the chemical and/or structural and hence functional stability of water basedMXeneinks over time is not reliable, opening research avenues for further development of stable and conductiveMXeneinks. Such priorities will enable applications requiring high‐resolution and highly reliable printedMXeneelectronics using state‐of‐the art printing methods. EngineeringMXenestructural and surface functional properties while tuningMXeneink rheology in benign solvents of choice will be a key for ink developments. This review article summarizes the present status and prospects ofMXeneinks and their use in inkjet‐printed (IJP) technology for future flexible and bendableMXetronics.more » « less
- 
            Abstract 2D material hydrogels have recently sparked tremendous interest owing to their potential in diverse applications. However, research on the emerging 2D MXene hydrogels is still in its infancy. Herein, we show a universal 4D printing technology for manufacturing MXene hydrogels with customizable geometries, which suits a family of MXenes such as Nb 2 CT x , Ti 3 C 2 T x , and Mo 2 Ti 2 C 3 T x . The obtained MXene hydrogels offer 3D porous architectures, large specific surface areas, high electrical conductivities, and satisfying mechanical properties. Consequently, ultrahigh capacitance (3.32 F cm −2 (10 mV s −1 ) and 233 F g −1 (10 V s −1 )) and mass loading/thickness-independent rate capabilities are achieved. The further 4D-printed Ti 3 C 2 T x hydrogel micro-supercapacitors showcase great low-temperature tolerance (down to –20 °C) and deliver high energy and power densities up to 93 μWh cm −2 and 7 mW cm −2 , respectively, surpassing most state-of-the-art devices. This work brings new insights into MXene hydrogel manufacturing and expands the range of their potential applications.more » « less
- 
            Abstract Printing techniques using nanomaterials have emerged as a versatile tool for fast prototyping and potentially large‐scale manufacturing of functional devices. Surfactants play a significant role in many printing processes due to their ability to reduce interfacial tension between ink solvents and nanoparticles and thus improve ink colloidal stability. Here, a colloidal graphene quantum dot (GQD)‐based nanosurfactant is reported to stabilize various types of 2D materials in aqueous inks. In particular, a graphene ink with superior colloidal stability is demonstrated by GQD nanosurfactants via the π–π stacking interaction, leading to the printing of multiple high‐resolution patterns on various substrates using a single printing pass. It is found that nanosurfactants can significantly improve the mechanical stability of the printed graphene films compared with those of conventional molecular surfactant, as evidenced by 100 taping, 100 scratching, and 1000 bending cycles. Additionally, the printed composite film exhibits improved photoconductance using UV light with 400 nm wavelength, arising from excitation across the nanosurfactant bandgap. Taking advantage of the 3D conformal aerosol jet printing technique, a series of UV sensors of heterogeneous structures are directly printed on 2D flat and 3D spherical substrates, demonstrating the potential of manufacturing geometrically versatile devices based on nanosurfactant inks.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
