skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: New Spectral Algorithms for Refuting Smoothed k-SAT
Despite being a quintessential example of a hard problem, the quest for finding fast algorithms for deciding satisfiability of propositional formulas has occupied computer scientists both in theory and in practice. In this article, we survey recent progress on designing algorithms with strong refutation guarantees forsmoothedinstances of the k -SAT problem. Smoothed instances are formed by slight random perturbations of arbitrary instances, and their study is a way to bridge the gap between worst-case and average-case models of problem instances. Our methods yield new algorithms for smoothed k -SAT instances with guarantees that match those for the significantly simpler and well-studied model ofrandomformulas. Additionally, they have led to a novel and unexpected line of attack on some longstanding extremal combinatorial problems in graph theory and coding theory. As an example, we will discuss the resolution of a 2008 conjecture of Feige on the existence of short cycles in hypergraphs.  more » « less
Award ID(s):
2211972
PAR ID:
10595929
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Communications of the ACM
Volume:
68
Issue:
3
ISSN:
0001-0782
Page Range / eLocation ID:
83 to 91
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We continue the program of proving circuit lower bounds via circuit satisfiability algorithms. So far, this program has yielded several concrete results, proving that functions in$$\mathsf {Quasi}\text {-}\mathsf {NP} = \mathsf {NTIME}[n^{(\log n)^{O(1)}}]$$ Quasi - NP = NTIME [ n ( log n ) O ( 1 ) ] and other complexity classes do not have small circuits (in the worst case and/or on average) from various circuit classes$$\mathcal { C}$$ C , by showing that$$\mathcal { C}$$ C admits non-trivial satisfiability and/or#SAT algorithms which beat exhaustive search by a minor amount. In this paper, we present a new strong lower bound consequence of having a non-trivial#SAT algorithm for a circuit class$${\mathcal C}$$ C . Say that a symmetric Boolean functionf(x1,…,xn) issparseif it outputs 1 onO(1) values of$${\sum }_{i} x_{i}$$ i x i . We show that for every sparsef, and for all “typical”$$\mathcal { C}$$ C , faster#SAT algorithms for$$\mathcal { C}$$ C circuits imply lower bounds against the circuit class$$f \circ \mathcal { C}$$ f C , which may bestrongerthan$$\mathcal { C}$$ C itself. In particular:#SAT algorithms fornk-size$$\mathcal { C}$$ C -circuits running in 2n/nktime (for allk) implyNEXPdoes not have$$(f \circ \mathcal { C})$$ ( f C ) -circuits of polynomial size.#SAT algorithms for$$2^{n^{{\varepsilon }}}$$ 2 n ε -size$$\mathcal { C}$$ C -circuits running in$$2^{n-n^{{\varepsilon }}}$$ 2 n n ε time (for someε> 0) implyQuasi-NPdoes not have$$(f \circ \mathcal { C})$$ ( f C ) -circuits of polynomial size. Applying#SAT algorithms from the literature, one immediate corollary of our results is thatQuasi-NPdoes not haveEMAJ∘ACC0∘THRcircuits of polynomial size, whereEMAJis the “exact majority” function, improving previous lower bounds againstACC0[Williams JACM’14] andACC0∘THR[Williams STOC’14], [Murray-Williams STOC’18]. This is the first nontrivial lower bound against such a circuit class. 
    more » « less
  2. Abstract Given graph$$G=(V,E)$$ G = ( V , E ) with vertex setVand edge setE, the maxk-cut problem seeks to partition the vertex setVinto at mostksubsets that maximize the weight (number) of edges with endpoints in different parts. This paper proposes a graph folding procedure (i.e., a procedure that reduces the number of the vertices and edges of graphG) for the weighted maxk-cut problem that may help reduce the problem’s dimensionality. While our theoretical results hold for any$$k \ge 2$$ k 2 , our computational results show the effectiveness of the proposed preprocessonlyfor$$k=2$$ k = 2 and on two sets of instances. Furthermore, we observe that the preprocess improves the performance of a MIP solver on a set of large-scale instances of the max cut problem. 
    more » « less
  3. Abstract An ordering constraint satisfaction problem (OCSP) is defined by a family$$\mathcal F$$ F of predicates mapping permutations on$$\{1,\ldots,k\}$$ { 1 , , k } to$$\{0,1\}$$ { 0 , 1 } . An instance of ($$\mathcal F$$ F ) onnvariables consists of a list of constraints, each consisting of a predicate from$$\mathcal F$$ F applied onkdistinct variables. The goal is to find an ordering of thenvariables that maximizes the number of constraints for which the induced ordering on thekvariables satisfies the predicate. OCSPs capture well-studied problems including ‘maximum acyclic subgraph’ () and “maximum betweenness”. In this work, we consider the task of approximating the maximum number of satisfiable constraints in the (single-pass) streaming setting, when an instance is presented as a stream of constraints. We show that for every$$\mathcal F$$ F , ($$\mathcal F$$ F ) is approximation-resistant to o(n)-space streaming algorithms, i.e., algorithms using o(n) space cannot distinguish streams where almost every constraint is satisfiable from streams where no ordering beats the random ordering by a noticeable amount. This space bound is tight up to polylogarithmic factors. In the case of , our result shows that for every$$\epsilon>0$$ ϵ > 0 , is not$$(1/2+\epsilon)$$ ( 1 / 2 + ϵ ) -approximable in o(n) space. The previous best inapproximability result, due to Guruswami & Tao (2019), only ruled out 3/4-approximations in$$o(\sqrt n)$$ o ( n ) space. Our results build on recent works of Chou et al. (2022b, 2024) who provide a tight, linear-space inapproximability theorem for a broad class of “standard” (i.e., non-ordering) constraint satisfaction problems (CSPs) over arbitrary (finite) alphabets. Our results are obtained by building a family of appropriate standard CSPs (one for every alphabet sizeq) from any given OCSP and applying their theorem to this family of CSPs. To convert the resulting hardness results for standard CSPs back to our OCSP, we show that the hard instances from this earlier theorem have the following “partition expansion” property with high probability: For every partition of thenvariables into small blocks, for most of the constraints, all variables are in distinct blocks. 
    more » « less
  4. Abstract We studyinexactfixed-point proximity algorithms for solving a class of sparse regularization problems involving the$$\ell _0$$ 0 norm. Specifically, the$$\ell _0$$ 0 model has an objective function that is the sum of a convex fidelity term and a Moreau envelope of the$$\ell _0$$ 0 norm regularization term. Such an$$\ell _0$$ 0 model is non-convex. Existing exact algorithms for solving the problems require the availability of closed-form formulas for the proximity operator of convex functions involved in the objective function. When such formulas are not available, numerical computation of the proximity operator becomes inevitable. This leads to inexact iteration algorithms. We investigate in this paper how the numerical error for every step of the iteration should be controlled to ensure global convergence of the inexact algorithms. We establish a theoretical result that guarantees the sequence generated by the proposed inexact algorithm converges to a local minimizer of the optimization problem. We implement the proposed algorithms for three applications of practical importance in machine learning and image science, which include regression, classification, and image deblurring. The numerical results demonstrate the convergence of the proposed algorithm and confirm that local minimizers of the$$\ell _0$$ 0 models found by the proposed inexact algorithm outperform global minimizers of the corresponding$$\ell _1$$ 1 models, in terms of approximation accuracy and sparsity of the solutions. 
    more » « less
  5. A<sc>bstract</sc> Generalizing previous results for$$ \mathcal{N} $$ N = 0 and$$ \mathcal{N} $$ N = 1, we analyze$$ \mathcal{N} $$ N = 2 JT supergravity on asymptotically AdS2spaces with arbitrary topology and show that this theory of gravity is dual, in a holographic sense, to a certain random matrix ensemble in which supermultiplets of differentR-charge are statistically independent and each is described by its own$$ \mathcal{N} $$ N = 2 random matrix ensemble. We also analyze the case with a time-reversal symmetry, either commuting or anticommuting with theR-charge. In order to compare supergravity to random matrix theory, we develop an$$ \mathcal{N} $$ N = 2 analog of the recursion relations for Weil-Petersson volumes originally discovered by Mirzakhani in the bosonic case. 
    more » « less