skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: A Novel Fluorescent Chemosensor Based on Rhodamine Schiff Base: Synthesis, Photophysical, Computational and Bioimaging Application in Live Cells
A novel rhodamine-6G derivative, RdN, was synthesized by condensing rhodamine glyoxal and 3-hydroxy-2-naphthoic hydrazide using a microwave irradiation-assisted reaction. Colorimetric and photophysical studies have demonstrated that the molecule produced can selectively sense Pb2+ and Cu2+ ions in a solution of CH3CN/H2O (9:1, v/v). The spirolactam ring of RdN opens upon complexation with the cations, forming a highly fluorescent complex and a visible color change in the solution. The compound RdN was further studied with the help of computational methods such as the Density Functional Theory (DFT) method and time-dependent density functional theory (TD-DFT) calculations to study the binding interactions and properties of the molecule. DFT calculations and job plot data supported the 2:1 complex formation between RdN and Pb2+/Cu2+. The limit of detection for Pb2+ was determined to be 0.112 µM and 0.130 µM for Cu2+. The probe RdN was applied to the image of Pb2+ and Cu2+ ions in living cells and is safe for biomedical applications. It is used to monitor Pb2+ in environmental water samples.  more » « less
Award ID(s):
2100629
PAR ID:
10596067
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Inorganics
Volume:
13
Issue:
1
ISSN:
2304-6740
Page Range / eLocation ID:
5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Heavy metal cations such as Ag+, Pb2+, and Hg2+ can accumulate in living organisms, posing severe risks to biological systems, including humans. Therefore, removing heavy metal cations from wastewater is crucial before discharging them to the environment. However, trace levels and high-capacity removal of the heavy metals remain a critical challenge. This work demonstrates the synthesis and characterization of [Mo2S12]2− intercalated cobalt aluminum-layered double hydroxide, CoAl―Mo2S12―LDH (CoAl―Mo2S12), and its remarkable sorption properties for heavy metals. This material shows high efficiency for removing over 99.9% of Ag+, Cu2+, Hg2+, and Pb2+ from 10 ppm aqueous solutions with a distribution constant, Kd, as high as 107 mL/g. The selectivity order for removing these ions, determined from the mixed ion state experiment, was Pb2+ < Cu2+ ≪ Hg2+ < Ag+. This study also suggests that CoAl―Mo2S12 is not selective for Ni2+, Cd2+, and Zn2+ cations. CoAl―Mo2S12 is an efficient sorbent for Ag+, Cu2+, Hg2+, and Pb2+ ions at pH~12, with the removal performance of both Ag+ and Hg2+ cations retaining > 99.7% across the pH range of ~2 to 12. Our study also shows that the CoAl―Mo2S12 is a highly competent silver cation adsorbent exhibiting removal capacity (qm) as high as ~918 mg/g compared with the reported data. A detailed mechanistic analysis of the post-treated solid samples with Ag+, Hg2+, and Pb2+ reveals the formation of Ag2S, HgS, and PbMoO4, respectively, suggesting the precipitation reaction mechanism. 
    more » « less
  2. Introducing spin onto organic ligands that are coordinated to rare earth metal ions allows direct exchange with metal spin centres. This is particularly relevant for the deeply buried 4f-orbitals of the lanthanide ions that can give rise to unparalleled magnetic properties. For efficacy of exchange coupling, the donor atoms of the radical ligand require high-spin density. Such molecules are extremely rare owing to their reactive nature that renders isolation and purification difficult. Here, we demonstrate that a 2,2′-azopyridyl (abpy) radical ( S = 1/2) bound to the rare earth metal yttrium can be realized. This molecule represents the first rare earth metal complex containing an abpy radical and is unambigously characterized by X-ray crystallography, NMR, UV-Vis-NIR, and IR spectroscopy. In addition, the most stable isotope 89 Y with a natural abundance of 100% and a nuclear spin of ½ allows an in-depth analysis of the yttrium–radical complex via EPR and HYSCORE spectroscopy. Further insight into the electronic ground state of the radical azobispyridine-coordinated metal complex was realized through unrestricted DFT calculations, which suggests that the unpaired spin density of the SOMO is heavily localized on the azo and pyridyl nitrogen atoms. The experimental results are supported by NBO calculations and give a comprehensive picture of the spin density of the azopyridyl ancillary ligand. This unexplored azopyridyl radical anion in heavy element chemistry bears crucial implications for the design of molecule-based magnets particularly comprising anisotropic lanthanide ions. 
    more » « less
  3. Understanding the interactions between molecules on surfaces is crucial for advancing technologies in sensing, catalysis, and energy harvesting. In this study we explore the complex surface chemistry resulting from the interaction of Co(II)octaethylporphyrin (CoOEP) and iodine, I2, both in solution and at the phenyloctane/HOPG interface. In pursuit of this goal, we report results from electrochemistry, NMR and UV-Vis spectroscopy, X-ray crystallography, scanning tunneling microscopy (STM), and density functional theory (DFT). Both spectroscopic methods of analysis confirmed that at and above the stoichiometric ratio of one CoOEP to one I2 the reaction product was metal centered CoIII(OEP)I. X-ray crystallography verified that a single iodine is bonded to each cobalt ion in the triclinic, P-1 system. The surface chemistry of CoOEP and I2 is complicated and remarkably dependent on the iodine concentration. STM images of CoOEP and I2 in phenyloctane on highly oriented pyrolytic graphite (HOPG) at low halogen concentrations (1:<2 Co:I ratios) presented random individual Co(OEP)I molecules weakly adsorbed onto a hexagonal (HEX) CoOEP monolayer. Images of 1:2 Co:I ratio solutions, showed phase segregated HEX CoOEP and pseudo-rectangular (REC) Co(OEP)I incorporating one solvent molecule per Co(OEP)I. The REC structure formed in long parallel rows with the number of rows increasing with increasing solution I2. In this case, the presence of CoOEP on the surface was attributed to the spontaneous reduction of Co(OEP)I by the graphite substrate. DFT calculations indicate that the REC Co(OEP)I:PhO form is energetically more stable than the HEX form of Co(OEP)I on HOPG. Experimental STM images and DFT calculated adsorption energies and STM images support our interpretation of the observed structures. 
    more » « less
  4. We present a new implementation for computing spin–orbit couplings (SOCs) within a time-dependent density-functional theory (TD-DFT) framework in the standard spin-conserving formulation as well in the spin–flip variant (SF-TD-DFT). This approach employs the Breit–Pauli Hamiltonian and Wigner–Eckart’s theorem applied to the reduced one-particle transition density matrices, together with the spin–orbit mean-field treatment of the two-electron contributions. We use a state-interaction procedure and compute the SOC matrix elements using zero-order non-relativistic states. Benchmark calculations using several closed-shell organic molecules, diradicals, and a single-molecule magnet illustrate the efficiency of the SOC protocol. The results for organic molecules (described by standard TD-DFT) show that SOCs are insensitive to the choice of the functional or basis sets, as long as the states of the same characters are compared. In contrast, the SF-TD-DFT results for small diradicals (CH 2 , [Formula: see text], SiH 2 , and [Formula: see text]) show strong functional dependence. The spin-reversal energy barrier in a Fe(III) single-molecule magnet computed using non-collinear SF-TD-DFT (PBE0, ωPBEh/cc-pVDZ) agrees well with the experimental estimate. 
    more » « less
  5. The discovery of singular organic radical ligands is a formidable challenge due to high reactivity arising from the unpaired electron. Matching radical ligands with metal ions to engender magnetic coupling is crucial for eliciting preeminent physical properties such as conductivity and magnetism that are crucial for future technologies. The metal-radical approach is especially important for the lanthanide ions exhibiting deeply buried 4f-orbitals. The radicals must possess a high spin density on the donor atoms to promote strong coupling. Combining diamagnetic 89 Y ( I = 1/2) with organic radicals allows for invaluable insight into the electronic structure and spin-density distribution. This approach is hitherto underutilized, possibly owing to the challenging synthesis and purification of such molecules. Herein, evidence of an unprecedented bisbenzimidazole radical anion (Bbim 3− ˙) along with its metalation in the form of an yttrium complex, [K(crypt-222)][(Cp* 2 Y) 2 (μ-Bbim˙)] is provided. Access of Bbim 3− ˙ was feasible through double-coordination to the Lewis acidic metal ion and subsequent one-electron reduction, which is remarkable as Bbim 2− was explicitly stated to be redox-inactive in closed-shell complexes. Two molecules containing Bbim 2− (1) and Bbim 3− ˙ (2), respectively, were thoroughly investigated by X-ray crystallography, NMR and UV/Vis spectroscopy. Electrochemical studies unfolded a quasi-reversible feature and emphasize the role of the metal centre for the Bbim redox-activity as neither the free ligand nor the Bbim 2− complex led to analogous CV results. Excitingly, a strong delocalization of the electron density through the Bbim 3− ˙ ligand was revealed via temperature-dependent EPR spectroscopy and confirmed through DFT calculations and magnetometry, rendering Bbim 3− ˙ an ideal candidate for single-molecule magnet design. 
    more » « less