skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 7, 2026

Title: Shift of nanodroplet and nanocluster size distributions induced by dopant pick-up statistics
In pick-up experiments using nanodroplet and nanocluster beams, the size distribution of hosts carrying a specified number of dopants changes when the vapor density in the pick-up region is altered. This change, analyzed here, has quantitative consequences for the interpretation of data that are sensitive to host size, such as mass spectrometric, spectroscopic, and deflection measurements.  more » « less
Award ID(s):
2153255
PAR ID:
10596079
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
162
Issue:
5
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Advances in information technologies and vehicle automation have birthed new transportation services, including shared autonomous vehicles (SAVs). Shared autonomous vehicles are on-demand self-driving taxis, with flexible routes and schedules, able to replace personal vehicles for many trips in the near future. The siting and density of pick-up and drop-off (PUDO) points for SAVs, much like bus stops, can be key in planning SAV fleet operations, since PUDOs impact SAV demand, route choices, passenger wait times, and network congestion. Unlike traditional human-driven taxis and ride-hailing vehicles like Lyft and Uber, SAVs are unlikely to engage in quasi-legal procedures, like double parking or fire hydrant pick-ups. In congested settings, like central business districts (CBD) or airport curbs, SAVs and others will not be allowed to pick up and drop off passengers wherever they like. This paper uses an agent-based simulation to model the impact of different PUDO locations and densities in the Austin, Texas CBD, where land values are highest and curb spaces are coveted. In this paper 18 scenarios were tested, varying PUDO density, fleet size and fare price. The results show that for a given fare price and fleet size, PUDO spacing (e.g., one block vs. three blocks) has significant impact on ridership, vehicle-miles travelled, vehicle occupancy, and revenue. A good fleet size to serve the region’s 80 core square miles is 4000 SAVs, charging a $1 fare per mile of travel distance, and with PUDOs spaced three blocks of distance apart from each other in the CBD. 
    more » « less
  2. We enhance the mobile sequential recommendation (MSR) model and address some critical issues in existing formulations by proposing three new forms of the MSR from a multi-user perspective. The multi-user MSR (MMSR) model searches optimal routes for multiple drivers at different locations while disallowing overlapping routes to be recommended. To enrich the properties of pick-up points in the problem formulation, we additionally consider the pick-up capacity as an important feature, leading to the following two modified forms of the MMSR: MMSR-m and MMSR-d. The MMSR-m sets a maximum pick-up capacity for all urban areas, while the MMSR-d allows the pick-up capacity to vary at different locations. We develop a parallel framework based on the simulated annealing to numerically solve the MMSR problem series. Also, a push-point method is introduced to improve our algorithms further for the MMSR-m and the MMSR-d, which can handle the route optimization in more practical ways. Our results on both real-world and synthetic data confirmed the superiority of our problem formulation and solutions under more demanding practical scenarios over several published benchmarks. 
    more » « less
  3. Soft continuum manipulators, inspired by squid tentacles and elephant trunks, show promise in allowing robots to safely interact with complex environments. One ongoing problem for these manipulators is torsional stiffness, as continuum manipulators are naturally compliant and cannot actively resist torsional strain. A hybrid actuator that combines molded silicone actuators with 3D printed flexible wave springs is used to overcome this problem. It is shown that the inclusion of the 3D printed wave spring increases actuator torsional stiffness by up to a factor of 10. Further investigation of these structures is performed using both experimentation and simulation. Finally, this hybrid actuator design is used to create a nine‐degree‐of‐freedom soft continuum manipulator, which is used to perform a cantilevered pick‐and‐place task impossible for a traditional soft manipulator of similar size. 
    more » « less
  4. Robotic pick and place tasks are symmetric under translations and rotations of both the object to be picked and the desired place pose. For example, if the pick object is rotated or translated, then the optimal pick action should also rotate or translate. The same is true for the place pose; if the desired place pose changes, then the place action should also transform accordingly. A recently proposed pick and place framework known as Transporter Net (Zeng, Florence, Tompson, Welker, Chien, Attarian, Armstrong, Krasin, Duong, Sindhwani et al., 2021) captures some of these symmetries, but not all. This paper analytically studies the symmetries present in planar robotic pick and place and proposes a method of incorporating equivariant neural models into Transporter Net in a way that captures all symmetries. The new model, which we call Equivariant Transporter Net, is equivariant to both pick and place symmetries and can immediately generalize pick and place knowledge to different pick and place poses. We evaluate the new model empirically and show that it is much more sample-efficient than the non-symmetric version, resulting in a system that can imitate demonstrated pick and place behavior using very few human demonstrations on a variety of imitation learning tasks. 
    more » « less
  5. Electric vehicles (EVs) have been used in the ride-hailing system in recent years, which brings the electric fleet management problem (EFMP) critical. This paper aims to leverage multi-agent reinforcement learning (MARL) in EFMP. In particular, we focus on how EVs learn to manage battery charging, pick up and drop off passengers. We propose an integrated SUMO-Gym framework based on the SUMO simulator to capture EVs’ asynchronous decisionmaking regarding charging and ride-hailing in complex traffic environments. We adopt a hierarchical reinforcement learning (HRL) scheme, where each EV decides to get charged or pick up a passenger on the upper level and chooses a charging station or passenger on the lower level. We develop a learning algorithm for the HRL scheme to solve EFMP and present numerical results about the efficiency of our algorithm and policies EVs have learned in EFMP. Our codes are available at https://github.com/LovelyBuggies/SUMO-Gym, which provides an open-source environment for researchers to design traffic scenarios and test RL algorithms for EFMP. 
    more » « less