Abstract Geological heterogeneity is abundant in crustal fault zones; however, its role in controlling the mechanical behaviour of faults is poorly constrained. Here, we present laboratory friction experiments on laterally heterogeneous faults, with patches of strong, rate-weakening quartz gouge and weak, rate-strengthening clay gouge. The experiments show that the heterogeneity leads to a significant reduction in strength and frictional stability in comparison to compositionally identical faults with homogeneously mixed gouges. We identify a combination of weakening effects, including smearing of the weak clay; differential compaction of the two gouges redistributing normal stress; and shear localization producing stress concentrations in the strong quartz patches. The results demonstrate that geological heterogeneity and its evolution can have pronounced effects on fault strength and stability and, by extension, on the occurrence of slow-slip transients versus earthquake ruptures and the characteristics of the resulting events, and should be further studied in lab experiments and earthquake source modelling.
more »
« less
This content will become publicly available on February 28, 2026
Strong asperities nucleate earthquakes on laboratory faults
Abundant heterogeneity has been documented on faults in nature across a wide range of length scales, including structural, mineralogical, and roughness variations. The role of complex heterogeneity on fault mechanics and frictional stability is not well established, and experiments investigating heterogeneity have typically incorporated a single source of heterogeneity. Here, we conduct rock friction experiments on rough, bimaterial faults that are creeping, or steadily sliding, to explore the role of lithological heterogeneity on fault mechanics and stability. When strong asperities juxtapose weak gouge, stable sliding occurs with a low friction coefficient, µ. Encounters of strong diabase asperities on talc gouge lined faults initiate dramatic increases in µ and transitions to unstable sliding characterized by frequent stick-slip events (StSE). Seismic moments and stress drops of StSE decrease with increasing asperity abundance. Stress is concentrated at asperities during encounters, increasing with decreasing asperity abundance and leading to extensive mechanical damage. Interactions between strong, velocity weakening asperities provide a model to explain the nucleation of seismic and aseismic slip events on nominally stable, creeping faults.
more »
« less
- Award ID(s):
- 2052897
- PAR ID:
- 10596188
- Publisher / Repository:
- Geology
- Date Published:
- Journal Name:
- Geology
- Volume:
- 53
- Issue:
- 5
- ISSN:
- 0091-7613
- Page Range / eLocation ID:
- 420 to 424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Tectonic faults fail through a spectrum of slip modes, ranging from slow aseismic creep to rapid slip during earthquakes. Understanding the seismic radiation emitted during these slip modes is key for advancing earthquake science and earthquake hazard assessment. In this work, we use laboratory friction experiments instrumented with ultrasonic sensors to document the seismic radiation properties of slow and fast laboratory earthquakes. Stick‐slip experiments were conducted at a constant loading rate of 8 μm/s and the normal stress was systematically increased from 7 to 15 MPa. We produced a full spectrum of slip modes by modulating the loading stiffness in tandem with the fault zone normal stress. Acoustic emission data were recorded continuously at 5 MHz. We demonstrate that the full continuum of slip modes radiate measurable high‐frequency energy between 100 and 500 kHz, including the slowest events that have peak fault slip rates <100 μm/s. The peak amplitude of the high‐frequency time‐domain signals scales systematically with fault slip velocity. Stable sliding experiments further support the connection between fault slip rate and high‐frequency radiation. Experiments demonstrate that the origin of the high‐frequency energy is fundamentally linked to changes in fault slip rate, shear strain, and breaking of contact junctions within the fault gouge. Our results suggest that having measurements close to the fault zone may be key for documenting seismic radiation properties and fully understanding the connection between different slip modes.more » « less
-
Abstract Evidence for coseismic temperature rise that induces dynamic weakening is challenging to directly observe and quantify in natural and experimental fault rocks. Hematite (U-Th)/He (hematite He) thermochronometry may serve as a fault-slip thermometer, sensitive to transient high temperatures associated with earthquakes. We test this hypothesis with hematite deformation experiments at seismic slip rates, using a rotary-shear geometry with an annular ring of silicon carbide (SiC) sliding against a specular hematite slab. Hematite is characterized before and after sliding via textural and hematite He analyses to quantify He loss over variable experimental conditions. Experiments yield slip surfaces localized in an ∼5–30-µm-thick layer of hematite gouge with <300-µm-diameter fault mirror (FM) zones made of sintered nanoparticles. Hematite He analyses of undeformed starting material are compared with those of FM and gouge run products from high-slip-velocity experiments, showing >71% ± 1% (1σ) and 18% ± 3% He loss, respectively. Documented He loss requires short-duration, high temperatures during slip. The spatial heterogeneity and enhanced He loss from FM zones are consistent with asperity flash heating (AFH). Asperities >200–300 µm in diameter, producing temperatures >900 °C for ∼1 ms, can explain observed He loss. Results provide new empirical evidence describing AFH and the role of coseismic temperature rise in FM formation. Hematite He thermochronometry can detect AFH and thus seismicity on natural FMs and other thin slip surfaces in the upper seismogenic zone of Earth’s crust.more » « less
-
Abstract Heterogeneity in geometry, stress, and material properties is widely invoked to explain the observed spectrum of slow earthquake phenomena. However, the effects of length scale of heterogeneity on macroscopic fault sliding behavior remain underexplored. We investigate this question for subduction megathrusts, via linear stability analysis and quasi‐dynamic simulations of slip on a dipping fault characterized by rate‐and‐state friction. Frictional heterogeneity is imposed through alternating velocity‐strengthening and velocity‐weakening (VW) patches, over length scales spanning from those representative of basement relief (several km) to the entrainment of contrasting lithologies (100s of m). The resulting fault behavior is controlled by: (a) the average frictional properties of the fault, and (b) the size of VW blocks relative to a critical length scale. Reasonable ranges of these properties yield sliding behaviors spanning from stable sliding, to slow and seismic slip events that are confined within VW blocks or propagate along the entire fault.more » « less
-
Heterogeneity in geometry, stress, and material properties is widely invoked to explain the observed spectrum of slow earthquake phenomena. However, the effects of length scale of heterogeneity on macroscopic fault sliding behavior remain underexplored. We investigate this question for subduction megathrusts, via linear stability analysis and quasi-dynamic simulations of slip on a dipping fault characterized by rate-and-state friction (RSF). Frictional heterogeneity is imposed through alternating velocity-strengthening (VS) and velocity-weakening (VW) patches, over length scales spanning from those representative of basement relief (several km) to the entrainment of contrasting lithologies (100s of m). The resulting fault behavior is controlled by: (1) the average frictional properties of the fault, and (2) the size of VW blocks relative to a critical length scale. Reasonable ranges of these properties yield sliding behaviors spanning from stable sliding, to slow and seismic slip events that are confined within VW blocks or propagate along the entire fault.more » « less
An official website of the United States government
