skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Daily CMIP6 and NSIDC CDR (National Snow and Ice Data Center Climate Data Record) Arctic sea ice area and sea ice extent, 1980-2100
This dataset contains the daily Arctic sea ice area (SIA) and sea ice extent (SIE) data for all CMIP6 models and the historical period based on the NOAA/NSIDC Climate Data Record (CDR) created for Heuzé and Jahn, The first ice-free day in the Arctic Ocean could occur before 2030, accepted, Nature Communications. This is a derived dataset based on publicly available underlying data: - For the CMIP6 data, the SIA and SIE data included here is based on the daily siconc and siconca CMIP6 model output freely available on the CMIP6 data portals (https://pcmdi.llnl.gov/CMIP6/). These pan-Arctic daily SIA and SIE were calculated north of 30N, on each model's native grid, using each models grid area data (areacello or areacella). SIA was defined as sea ice concentration multiplied by the grid cell area and summed over all grid cells. SIE was defined as the sum of the grid cell area for all grid cells where the sea ice concentration was larger than 0.15. All processed SIA and SIE data is included in this dataset, even if the model was later excluded from the analysis for one reason or another (see Heuzé and Jahn 2024, Methods section). All data included has the same number of days as the underlying model. The historical data spans 1980-2014 and can be found in the CMIP6_historical_data.zip file, and the scenario data spans 2015 to the end of the 21st century simulation, for multiple scenarios (SSPs), and can be found in CMIP6_ssp_data.zip. Files are provided as .zip files to make it easy to download all data at once, as the SIA and SIE data is saved in one file per model and ensemble member, and for the scenario simulations, also per ssp. - For the NOAA/NSIDC Climate Data Record (CDR), the SIA and SIE data included here is based on the NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4, doi:10.7265/efmz-2t65, Meier et al 2021. The sea ice concentration is multiplied by the grid size of each grid box, for this data, 25x25 kilometers (km) = 625 kilometers squared (km2), and then summed over the full domain. In doing that, we include the interpolated data in the pole hole as included in the sea ice concentration data, but exclude all land/coastal grid points (i.e., values > 2.5 in the underlying data). As the filename indicates, we removed all leap year data from this data (dropped every Feb 29th) so that all years have 365 days. Note that while the file name says this data is for 19790101 to 20231231, it does indeed include 1978 as first year (so 1978-01-01-2023-12-31), with daily data starting on 1978-10-25 (nan before then). We did not change the name of the data file to still allow all archived scripts using this datafile to run. Scripts that work on this data associated with Heuzé and Jahn (2024) can be found at: https://zenodo.org/records/14008665, doi:10.5281/zenodo.14006059 References: Meier, W. N., F. Fetterer, A. K. Windnagel, and S. Stewart. 2021. NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4. Boulder, Colorado, USA. NSIDC: National Snow and Ice Data Center https://doi.org/10.7265/efmz-2t65  more » « less
Award ID(s):
1847398
PAR ID:
10596598
Author(s) / Creator(s):
;
Publisher / Repository:
NSF Arctic Data Center
Date Published:
Subject(s) / Keyword(s):
Arctic sea ice area sea ice extent CMIP6 daily
Format(s):
Medium: X Other: text/xml
Sponsoring Org:
National Science Foundation
More Like this
  1. This dataset includes statistically resampled monthly time series data of Arctic sea ice area and gridded data for March and September for sea ice concentration for a selection of large ensemble climate models and observational datasets. Arctic sea ice concentrations and areas are resampled from all available members of six coupled climate models from the Coupled Model Intercomparison Project 5 (CMIP5). These six models are: The second generation Canadian Earth System Model (CanESM2), The Community Earth System Mode version 1 (CESM1), The Commonwealth Scientific and Industrial Research Organisation Global Climate Model Mark 3.6 (CSIRO MK3.6), The Geophysical Fluid Dynamics Laboratory Coupled Climate Model version 3 (GFDL CM3), Geophysical Fluid Dynamics Laboratory Earth System Model version 2 with Modular Ocean Model version 4.1 (GFDL ESM2M), Max Planck Institute Earth System Model version 1 (MPI ESM1). The Four observational datasets are The Hadley Centre Sea Ice and Sea Surface Temperature data set version 1 (HadISST1), The National Oceanic and Atmospheric Administration and National Snow and Ice Data Center Climate Data Record Version 4 (CDR), The The National Aeronautics and Space Administration Team Algorithm (NT), and the The National Aeronautics and Space Administration Bootstrap Team Algorithm (BT). The sea ice area data is resampled 10,000 times and then the standard deviation of those resamplings is calculated, which can be considered analagous to interannual variability of sea ice area (SIA). The standard deviation (sigma) and mean (mu) of these data represent the variability and typical values respectively of interannual variability found in each ensemble member or observational dataset. Sea ice concentration is resampled 1000 times with the same standard deviation and mean metrics for sea ice concentration. This dataset was created to evaluate climate model projections of Arctic sea ice interannual variability and is used in the article Wyburn-Powell, Jahn, England (2022), Modeled Interannual Variability of Arctic Sea Ice Cover is Within Observational Uncertainty, Journal of Climate, https://doi.org/10.1175/JCLI-D-21-0958.1. This work was conducted at the University of Colorado Boulder from 2020-2022. The figures from the Journal of Climate article can be reproduced from the following datasets. The code used to create the datasets can be located at https://www.doi.org/10.5281/zenodo.6687725. - Figure 1: Sigma_obs_SIA.nc - Figure 2: Sigma_obs_SIA.nc, Mu_obs_SIA.nc, Sigma_mem_SIA.nc, Mu_mem_SIA.nc - Figure 3: Sigma_mem_varying_time_periods_1965_2066_03.nc, Sigma_LE_varying_time_periods_1965_2066_03.nc, Sigma_LE_varying_time_periods_1970_2040_09.nc, Sigma_obs_varying_time_periods_1953_2020.nc - Figure 4: Sigma_obs_SIA.nc, Sigma_mem_SIA.nc - Figure 5: Sigma_obs_SIA.nc - Figure 6: <model_name>_resampled_0<month>_individual.nc, <observational_dataset>_resampled_individual_1979_2020_03_09.nc - Figure 7: Sigma_obs_SIA.nc, Mu_obs_SIA.nc, Sigma_mem_SIA.nc, Mu_mem_SIA.nc - Figure 8: <model_name>_resampled_0<month>_individual.nc, <observational_dataset>_resampled_individual_1979_2020_03_09.nc - Figure 9: Sigma_mem_SIA.nc, Sigma_LE_SIA.nc 
    more » « less
  2. Arctic sea ice extent (SIE) has drawn increasing attention from scientists in recent years because of its fast decline in the Boreal summer and early fall. The measurement of SIE is derived from remote sensing data and is both a lagged and leading indicator of climate change. To characterize at a local level the decline in SIE, we use remote-sensing data at 25 km resolution to fit a spatio-temporal logistic autoregressive model of the sea-ice evolution in the Arctic region. The model incorporates last year’s ice/water binary observations at nearby grid cells in an autoregressive manner with autoregressive coefficients that vary both in space and time. Using the model-based estimates of ice/water probabilities in the Arctic region, we propose several graphical summaries to visualize the spatio-temporal changes in Arctic sea ice beyond what can be visualized with the single time series of SIE. In ever-higher latitude bands, we observe a consistently declining temporal trend of sea ice in the early fall. We also observe a clear decline in and contraction of the sea ice’s distribution between 70∘N–75∘N, and of most concern is that this may reflect the future behavior of sea ice at ever-higher latitudes under climate change. 
    more » « less
  3. Abstract This study quantifies the state of the art in the rapidly growing field of seasonal Arctic sea ice prediction. A novel multimodel dataset of retrospective seasonal predictions of September Arctic sea ice is created and analyzed, consisting of community contributions from 17 statistical models and 17 dynamical models. Prediction skill is compared over the period 2001–20 for predictions of pan-Arctic sea ice extent (SIE), regional SIE, and local sea ice concentration (SIC) initialized on 1 June, 1 July, 1 August, and 1 September. This diverse set of statistical and dynamical models can individually predict linearly detrended pan-Arctic SIE anomalies with skill, and a multimodel median prediction has correlation coefficients of 0.79, 0.86, 0.92, and 0.99 at these respective initialization times. Regional SIE predictions have similar skill to pan-Arctic predictions in the Alaskan and Siberian regions, whereas regional skill is lower in the Canadian, Atlantic, and central Arctic sectors. The skill of dynamical and statistical models is generally comparable for pan-Arctic SIE, whereas dynamical models outperform their statistical counterparts for regional and local predictions. The prediction systems are found to provide the most value added relative to basic reference forecasts in the extreme SIE years of 1996, 2007, and 2012. SIE prediction errors do not show clear trends over time, suggesting that there has been minimal change in inherent sea ice predictability over the satellite era. Overall, this study demonstrates that there are bright prospects for skillful operational predictions of September sea ice at least 3 months in advance. 
    more » « less
  4. The National Weather Service Alaska Sea Ice Program (ASIP) produces manually-drawn, high-resolution sea ice maps for the Pacific Arctic. This is done by leveraging all available imagery and observations of sea ice conditions in the preceding 24 hours, prioritized by data quality and latency. These ice maps are published three times per week from 2007 to June 30, 2014, and then daily from July 1, 2014 to the present. The data follow World Meteorological Organization standard for ice charts, meaning the shapefiles are published in SIGRID-3 vector archive format and published charts are in standard color code. Within these shapefiles, the source data are expressed as a series of polygons, each with an ice concentration range. Here, we compute the average ice concentration within each polygon, as well as the range. These data are then projected onto a 0.05 degree grid in latitude and longitude. Ultimately, this results in gridded maps of sea ice concentration for each day of available data. 
    more » « less
  5. Abstract The accuracy of sea-ice motion products provided by the National Snow and Ice Data Center (NSIDC) and the Ocean and Sea Ice Satellite Application Facility (OSI-SAF) was validated with data collected by ice drifters that were deployed in the western Arctic Ocean in 2014 and 2016. Data from both NSIDC and OSI-SAF products exhibited statistically significant ( p < 0.001) correlation with drifter data. The OSI-SAF product tended to overestimate ice speed, while underestimation was demonstrated for the NSIDC product, especially for the melt season and the marginal ice zone. Monthly Lagrangian trajectories of ice floes were reconstructed using the products. Larger spatial variability in the deviation between NSIDC and drifter trajectories was observed than that of OSI-SAF, and seasonal variability in the deviation for NSIDC was observed. Furthermore, trajectories reconstructed using the NSIDC product were sensitive to variations in sea-ice concentration. The feasibility of using remote-sensing products to characterize sea-ice deformation was assessed by evaluating the distance between two arbitrary positions as estimated by the products. Compared with the OSI-SAF product, relative errors are lower (<11.6%), and spatial-temporal resolutions are higher in the NSIDC product, which makes it more suitable for estimating sea-ice deformation. 
    more » « less