This dataset contains data used in the paper: Revisiting the Last Ice Area Projections from a High-Resolution Global Earth System Model - Fol et al (2025). Results are organized in excel files or numpy arrays with the dataset name, variable and ensemble member (for simulations) in the name of the file. See below for more information on what variables are included in the files and their structure. CESM_HR : CESM_HR_SIAFluxes - per ensemble member: Timeseries of monthly SIA flux per gate. CESM_HR_fluxesCAADiv.npy, _fluxesQEIDiv.npy, _fuxesQEIDivMeltSeason.npy : Timeseries of annual divergence over the Queen Elizabeth Islands and the Southern Canadian Arctic Archipelago derived from monthly SIA fluxes at the entry and exit gates. CESM_HR_ThicknessDistribution.xlsx : Thickness distribution for the LIA-N, QEI, and CAA-S computed from the simulated thickness distribution (aicen001, aicen002, aicen003, aicen004, aicen005). CESM_HR_tendencies - per ensemble member- per region (LIA-N, QEI, CAA-S). Timeseries of melt season integrated thermodynamic, dynamic (advection and ridging terms) sea ice area loss. CESH_HR_sitPanArctic - per ensemble member: Timeseries of pan-Arctic mean may sea ice thickness. CESM_HR_sieSept and CESM_HR_sieMarch - per ensemble member- per region (LIA-N, QEI, CAA-S) and pan-Arctic : Timeseries of March or September sea ice extent, sea ice area. CESM_HR_sic - per ensemble member- per region (LIA-N, QEI, CAA-S): Timeseries of mean sea ice concentration for grid cells having more than 15% of SIC (no open water). CESM_HR_meltSeason - per ensemble member- per region (LIA-N, QEI, CAA-S): Timeseries of annual freeze and melt onset dates allowing the definition of the melt season based on the thermodynamic sea ice area tendency crossing 0. CESM_HR_mean_mayThickness.npy and CESM_HR_meanseptconc.npy: Results for map of the mean september sea ice concentration and may ice thickness for 1981-2000, 2001-2020, 2021-2040 and 2041-2060. CESM_LR : CESM_LR_sieSept - per region (LIA-N, QEI, CAA-S) and pan-Arctic: Timeseries of September sea ice extent and sea ice area. CESM_LR_sitPanArctic.xlsx: Timeseries of pan-Arctic mean May sea ice thickness. CESM_LR_tendencies - per region (LIA-N, QEI, CAA-S). Timeseries of melt season integrated thermodynamic, dynamic (advection and ridging terms) sea ice area loss. CESM_LR_meltSeason - per region (LIA-N, QEI, CAA-S): Timeseries of annual freeze and melt onset dates allowing the definition of the melt season based on the thermodynamic sea ice area tendency crossing 0. CESM2_LE: CESM2_LE_CAA_sept, _LIAN_sept, _QEI_sept, panArctic: Mean September sea ice extent and sea ice area per region. There is one excel tab per ensemble member in each file. CESM2_LE_pan_Arctic_hi_may: Pan-Arctic mean May sea ice thickness. There is one excel tab per ensemble member in each file. PIOMAS: PIOMAS_panArctic_hi.xlsx: Timeseries of mean may sea ice thickness. PIOMAS_mean_1981_2000_mean_mayThickness.npy : Results for map of the mean May ice thickness for 1981-2000 and 2001-2020. Observations: CIS_marchSept_1982_1990_sie - per region (QEI and CAA-S) : Timeseries of March and September mean sea ice extent and area. CIS ice charts do not fully cover the LIA-N. NSDICCDR_1979_2023_sia - per region (LIA-N, QEI, CAA-S) and pan-Arctic : Timeseries of March and September mean sea ice extent and area. NSDICCDR_1981_2000_mean_septConc.npy: Results for map of the mean September sea ice concentration for 1981-2000 and 2001-2020. NSDICCDR_1981_2000_LIAN_sic.xlsx: Timeseries of monthly mean sea ice concentration in the LIA-N. NSDICCDR_1981_2000_QEI_sic.xlsx: Timeseries of monthly mean sea ice concentration in the QEI. These results are derived from the following datasets: Ensemble members 1 and 3 of simulations from the high-resolution Community Earth System Model version 1.3 (CESM1.3-HR) produced for the International Laboratory for High-Resolution Earth System Prediction (iHESP) by the Qingdao National Laboratory for Marine Science and Technology (QNLM), Texas A&M University (TAMU), and the U.S. National Center for Atmospheric Research (NCAR). The lower resolution simulation is also used (CESM1.3-LR). (Chang et al., 2020; Zhang et al., 2020). The 100-ensemble members Community Earth System Model (version 2) Large Ensemble (CESM2-LE) (Danabasoglu et al., 2020). Satellite-derived monthly mean SIA fluxes through entry and exit gates of the CAA and Nares Strait (Howell et a., 2019; 2021; 2023; 2024; Smedsrud et al., 2017; Kwok, 2006). The National Snow and Ice Data Center (NSIDC) Climate Data Record (CDR) (version 4) sea ice concentration, stored on a 25 x 25 km polar stereographic grid centered on the North Pole from 1979 to 2023 (Meier et al., 2021). The gridded version of the regional Canadian Ice Service (CIS) Digital Archive ice charts from the Eastern and Western Arctic regions (Tivy et al., 2011). The Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) assimilated sea ice concentration and derived ice thickness distribution estimates in the Arctic from 1978 to 2022 (Zhang et al., 2000).
more »
« less
Daily CMIP6 and NSIDC CDR (National Snow and Ice Data Center Climate Data Record) Arctic sea ice area and sea ice extent, 1980-2100
This dataset contains the daily Arctic sea ice area (SIA) and sea ice extent (SIE) data for all CMIP6 models and the historical period based on the NOAA/NSIDC Climate Data Record (CDR) created for Heuzé and Jahn, The first ice-free day in the Arctic Ocean could occur before 2030, accepted, Nature Communications. This is a derived dataset based on publicly available underlying data: - For the CMIP6 data, the SIA and SIE data included here is based on the daily siconc and siconca CMIP6 model output freely available on the CMIP6 data portals (https://pcmdi.llnl.gov/CMIP6/). These pan-Arctic daily SIA and SIE were calculated north of 30N, on each model's native grid, using each models grid area data (areacello or areacella). SIA was defined as sea ice concentration multiplied by the grid cell area and summed over all grid cells. SIE was defined as the sum of the grid cell area for all grid cells where the sea ice concentration was larger than 0.15. All processed SIA and SIE data is included in this dataset, even if the model was later excluded from the analysis for one reason or another (see Heuzé and Jahn 2024, Methods section). All data included has the same number of days as the underlying model. The historical data spans 1980-2014 and can be found in the CMIP6_historical_data.zip file, and the scenario data spans 2015 to the end of the 21st century simulation, for multiple scenarios (SSPs), and can be found in CMIP6_ssp_data.zip. Files are provided as .zip files to make it easy to download all data at once, as the SIA and SIE data is saved in one file per model and ensemble member, and for the scenario simulations, also per ssp. - For the NOAA/NSIDC Climate Data Record (CDR), the SIA and SIE data included here is based on the NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4, doi:10.7265/efmz-2t65, Meier et al 2021. The sea ice concentration is multiplied by the grid size of each grid box, for this data, 25x25 kilometers (km) = 625 kilometers squared (km2), and then summed over the full domain. In doing that, we include the interpolated data in the pole hole as included in the sea ice concentration data, but exclude all land/coastal grid points (i.e., values > 2.5 in the underlying data). As the filename indicates, we removed all leap year data from this data (dropped every Feb 29th) so that all years have 365 days. Note that while the file name says this data is for 19790101 to 20231231, it does indeed include 1978 as first year (so 1978-01-01-2023-12-31), with daily data starting on 1978-10-25 (nan before then). We did not change the name of the data file to still allow all archived scripts using this datafile to run. Scripts that work on this data associated with Heuzé and Jahn (2024) can be found at: https://zenodo.org/records/14008665, doi:10.5281/zenodo.14006059 References: Meier, W. N., F. Fetterer, A. K. Windnagel, and S. Stewart. 2021. NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 4. Boulder, Colorado, USA. NSIDC: National Snow and Ice Data Center https://doi.org/10.7265/efmz-2t65
more »
« less
- Award ID(s):
- 1847398
- PAR ID:
- 10596598
- Publisher / Repository:
- NSF Arctic Data Center
- Date Published:
- Subject(s) / Keyword(s):
- Arctic sea ice area sea ice extent CMIP6 daily
- Format(s):
- Medium: X Other: text/xml
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This dataset includes statistically resampled monthly time series data of Arctic sea ice area and gridded data for March and September for sea ice concentration for a selection of large ensemble climate models and observational datasets. Arctic sea ice concentrations and areas are resampled from all available members of six coupled climate models from the Coupled Model Intercomparison Project 5 (CMIP5). These six models are: The second generation Canadian Earth System Model (CanESM2), The Community Earth System Mode version 1 (CESM1), The Commonwealth Scientific and Industrial Research Organisation Global Climate Model Mark 3.6 (CSIRO MK3.6), The Geophysical Fluid Dynamics Laboratory Coupled Climate Model version 3 (GFDL CM3), Geophysical Fluid Dynamics Laboratory Earth System Model version 2 with Modular Ocean Model version 4.1 (GFDL ESM2M), Max Planck Institute Earth System Model version 1 (MPI ESM1). The Four observational datasets are The Hadley Centre Sea Ice and Sea Surface Temperature data set version 1 (HadISST1), The National Oceanic and Atmospheric Administration and National Snow and Ice Data Center Climate Data Record Version 4 (CDR), The The National Aeronautics and Space Administration Team Algorithm (NT), and the The National Aeronautics and Space Administration Bootstrap Team Algorithm (BT). The sea ice area data is resampled 10,000 times and then the standard deviation of those resamplings is calculated, which can be considered analagous to interannual variability of sea ice area (SIA). The standard deviation (sigma) and mean (mu) of these data represent the variability and typical values respectively of interannual variability found in each ensemble member or observational dataset. Sea ice concentration is resampled 1000 times with the same standard deviation and mean metrics for sea ice concentration. This dataset was created to evaluate climate model projections of Arctic sea ice interannual variability and is used in the article Wyburn-Powell, Jahn, England (2022), Modeled Interannual Variability of Arctic Sea Ice Cover is Within Observational Uncertainty, Journal of Climate, https://doi.org/10.1175/JCLI-D-21-0958.1. This work was conducted at the University of Colorado Boulder from 2020-2022. The figures from the Journal of Climate article can be reproduced from the following datasets. The code used to create the datasets can be located at https://www.doi.org/10.5281/zenodo.6687725. - Figure 1: Sigma_obs_SIA.nc - Figure 2: Sigma_obs_SIA.nc, Mu_obs_SIA.nc, Sigma_mem_SIA.nc, Mu_mem_SIA.nc - Figure 3: Sigma_mem_varying_time_periods_1965_2066_03.nc, Sigma_LE_varying_time_periods_1965_2066_03.nc, Sigma_LE_varying_time_periods_1970_2040_09.nc, Sigma_obs_varying_time_periods_1953_2020.nc - Figure 4: Sigma_obs_SIA.nc, Sigma_mem_SIA.nc - Figure 5: Sigma_obs_SIA.nc - Figure 6: <model_name>_resampled_0<month>_individual.nc, <observational_dataset>_resampled_individual_1979_2020_03_09.nc - Figure 7: Sigma_obs_SIA.nc, Mu_obs_SIA.nc, Sigma_mem_SIA.nc, Mu_mem_SIA.nc - Figure 8: <model_name>_resampled_0<month>_individual.nc, <observational_dataset>_resampled_individual_1979_2020_03_09.nc - Figure 9: Sigma_mem_SIA.nc, Sigma_LE_SIA.ncmore » « less
-
We apply the Canny edge algorithm to imagery from the Utqiaġvik coastal sea ice radar system (CSIRS) to identify regions of open water and sea ice and quantify ice concentration. The radar-derived sea ice concentration (SIC) is compared against the (closest to the radar field of view) 25 km resolution NSIDC Climate Data Record (CDR) and the 1 km merged MODIS-AMSR2 sea ice concentrations within the ∼11 km field of view for the year 2022–2023, when improved image contrast was first implemented. The algorithm was first optimized using sea ice concentration from 14 different images and 10 ice analysts (140 analyses in total) covering a range of ice conditions with landfast ice, drifting ice, and open water. The algorithm is also validated quantitatively against high-resolution MODIS-Terra in the visible range. Results show a correlation coefficient and mean bias error between the optimized algorithm, the CDR and MODIS-AMSR2 daily SIC of 0.18 and 0.54, and ∼−1.0 and 0.7%, respectively, with an averaged inter-analyst error of ±3%. In general, the CDR captures the melt period correctly and overestimates the SIC during the winter and freeze-up period, while the merged MODIS-AMSR2 better captures the punctual break-out events in winter, including those during the freeze-up events (reduction in SIC). Remnant issues with the detection algorithm include the false detection of sea ice in the presence of fog or precipitation (up to 20%), quantified from the summer reconstruction with known open water conditions. The proposed technique allows for the derivation of the SIC from CSIRS data at spatial and temporal scales that coincide with those at which coastal communities members interact with sea ice. Moreover, by measuring the SIC in nearshore waters adjacent to the shoreline, we can quantify the effect of land contamination that detracts from the usefulness of satellite-derived SIC for coastal communities.more » « less
-
Arctic sea ice extent (SIE) has drawn increasing attention from scientists in recent years because of its fast decline in the Boreal summer and early fall. The measurement of SIE is derived from remote sensing data and is both a lagged and leading indicator of climate change. To characterize at a local level the decline in SIE, we use remote-sensing data at 25 km resolution to fit a spatio-temporal logistic autoregressive model of the sea-ice evolution in the Arctic region. The model incorporates last year’s ice/water binary observations at nearby grid cells in an autoregressive manner with autoregressive coefficients that vary both in space and time. Using the model-based estimates of ice/water probabilities in the Arctic region, we propose several graphical summaries to visualize the spatio-temporal changes in Arctic sea ice beyond what can be visualized with the single time series of SIE. In ever-higher latitude bands, we observe a consistently declining temporal trend of sea ice in the early fall. We also observe a clear decline in and contraction of the sea ice’s distribution between 70∘N–75∘N, and of most concern is that this may reflect the future behavior of sea ice at ever-higher latitudes under climate change.more » « less
-
Abstract This study quantifies the state of the art in the rapidly growing field of seasonal Arctic sea ice prediction. A novel multimodel dataset of retrospective seasonal predictions of September Arctic sea ice is created and analyzed, consisting of community contributions from 17 statistical models and 17 dynamical models. Prediction skill is compared over the period 2001–20 for predictions of pan-Arctic sea ice extent (SIE), regional SIE, and local sea ice concentration (SIC) initialized on 1 June, 1 July, 1 August, and 1 September. This diverse set of statistical and dynamical models can individually predict linearly detrended pan-Arctic SIE anomalies with skill, and a multimodel median prediction has correlation coefficients of 0.79, 0.86, 0.92, and 0.99 at these respective initialization times. Regional SIE predictions have similar skill to pan-Arctic predictions in the Alaskan and Siberian regions, whereas regional skill is lower in the Canadian, Atlantic, and central Arctic sectors. The skill of dynamical and statistical models is generally comparable for pan-Arctic SIE, whereas dynamical models outperform their statistical counterparts for regional and local predictions. The prediction systems are found to provide the most value added relative to basic reference forecasts in the extreme SIE years of 1996, 2007, and 2012. SIE prediction errors do not show clear trends over time, suggesting that there has been minimal change in inherent sea ice predictability over the satellite era. Overall, this study demonstrates that there are bright prospects for skillful operational predictions of September sea ice at least 3 months in advance.more » « less
An official website of the United States government
