skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 1, 2026

Title: Spatial epidemiology of Tabanus (Diptera: Tabanidae) vectors of Trypanosoma
Abstract BackgroundTrypanosomaare protozoa parasites that infect animals and can cause economic losses in cattle production.Trypanosomalive in the blood and are transmitted by hematophagous insects, such as flies in the genusTabanus.Using ecological niche models, we explored the current geography of six commonTabanusspecies in Brazil, which are considered vectors ofTrypanosoma vivaxandTr. evansiin the Neotropics. MethodsWe used georeferenced data and biotic and abiotic variables integrated using a fundamental ecological niche modeling approach. Modeling results from sixTabanusspecies were used to identify risk areas ofTrypanosomatransmission in Latin America accounting for area predicted, landscape conditions, and density of livestock. We performed Jaccard, Schoener, and Hellinger metrics to indicate the ecological niche similarities of pairs ofTabanusspecies to identify known and likely vectors overlapping in distribution across geographies. ResultsOur results revealed significant ecological niche similarities for twoTabanusspecies (T. pungensandT. sorbillans), whereasT. triangulumandT. importunushave low ecological similarity. Ecological niche models predicted risk ofTrypanosomatransmission across Neotropical countries, with the highest risk in southern South America, Venezuela, and central Mexico. ConclusionsMore than 1.6 billion cattle and 38 million horses are under a threat category for infection risk. Furthermore, we identified specific areas and livestock populations at high risk of trypanosomiasis in Latin America. This study reveals the areas, landscapes, and populations at risk ofTrypanosomainfections in livestock in the Americas. Graphical Abstract  more » « less
Award ID(s):
2235295 2116748
PAR ID:
10596839
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Parasites & Vectors
Volume:
18
Issue:
1
ISSN:
1756-3305
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundCache Valley virus (CVV) is an understudiedOrthobunyaviruswith a high spillover transmission potential due to its wide geographical distribution and large number of associated hosts and vectors. Although CVV is known to be widely distributed throughout North America, no studies have explored its geography or employed computational methods to explore the mammal and mosquito species likely participating in the CVV sylvatic cycle. MethodsWe used a literature review and online databases to compile locality data for CVV and its potential vectors and hosts. We linked location data points with climatic data via ecological niche modeling to estimate the geographical range of CVV and hotspots of transmission risk. We used background similarity tests to identify likely CVV mosquito vectors and mammal hosts to detect ecological signals from CVV sylvatic transmission. ResultsCVV distribution maps revealed a widespread potential viral occurrence throughout North America. Ecological niche models identified areas with climate, vectors, and hosts suitable to maintain CVV transmission. Our background similarity tests identifiedAedes vexans,Culiseta inornata, andCulex tarsalisas the most likely vectors andOdocoileus virginianus(white-tailed deer) as the most likely host sustaining sylvatic transmission. ConclusionsCVV has a continental-level, widespread transmission potential. Large areas of North America have suitable climate, vectors, and hosts for CVV emergence, establishment, and spread. We identified geographical hotspots that have no confirmed CVV reports to date and, in view of CVV misdiagnosis or underreporting, can guide future surveillance to specific localities and species. Graphical Abstract 
    more » « less
  2. Abstract BackgroundEstimating malaria risk associated with work locations and travel across a region provides local health officials with information useful to mitigate possible transmission paths of malaria as well as understand the risk of exposure for local populations. This study investigates malaria exposure risk by analysing the spatial pattern of malaria cases (primarilyPlasmodium vivax)in Ubon Ratchathani and Sisaket provinces of Thailand, using an ecological niche model and machine learning to estimate the species distribution ofP. vivaxmalaria and compare the resulting niche areas with occupation type, work locations, and work-related travel routes. MethodsA maximum entropy model was trained to estimate the distribution ofP. vivaxmalaria for a period between January 2019 and April 2020, capturing estimated malaria occurrence for these provinces. A random simulation workflow was developed to make region-based case data usable for the machine learning approach. This workflow was used to generate a probability surface for the ecological niche regions. The resulting niche regions were analysed by occupation type, home and work locations, and work-related travel routes to determine the relationship between these variables and malaria occurrence. A one-way analysis of variance (ANOVA) test was used to understand the relationship between predicted malaria occurrence and occupation type. ResultsThe MaxEnt (full name) model indicated a higher occurrence ofP. vivaxmalaria in forested areas especially along the Thailand–Cambodia border. The ANOVA results showed a statistically significant difference between average malaria risk values predicted from the ecological niche model for rubber plantation workers and farmers, the two main occupation groups in the study. The rubber plantation workers were found to be at higher risk of exposure to malaria than farmers in Ubon Ratchathani and Sisaket provinces of Thailand. ConclusionThe results from this study point to occupation-related factors such as work location and the routes travelled to work, being risk factors in malaria occurrence and possible contributors to transmission among local populations. 
    more » « less
  3. Ruiz-Saenz, Julian (Ed.)
    Rabies is a zoonotic infectious disease of global distribution that impacts human and animal health. In rural Latin America, rabies negatively impacts food security and the economy due to losses in livestock production. The common vampire bat,Desmodus rotundus, is the main reservoir and transmitter of rabies virus (RABV) to domestic animals in Latin America.Desmodus rotundusRABV is known to impact the cattle industry, from small farmers to large corporations. We assessed the main patterns of rabies in cattle attributed toD.rotundusRABV across Latin America. Epidemiological data on rabies from Latin America were collected from the Pan American Health Organization spanning the 1970–2023 period. Analyses revealed an average of 450 outbreaks annually for the countries whereD.rotundusis distributed, with at least 6 animals dying in each outbreak. Brazil, Colombia, Peru, and Mexico were the Latin American countries with the highest number of rabies outbreaks during the study period and are the most affected countries in recent years. Findings suggest a re-emergence of bat-borne rabies in the region with more outbreaks reported in recent years, especially during the 2003–2020 period. Rabies outbreaks in cattle in the 2000–2020 period were significantly more frequent than in previous decades, with an increase in cross-species transmission after 2002. The size of outbreaks, however, was smaller in recent years, involving lower cattle mortality. Peru, El Salvador, and Brazil showed a strong association (R = 0.73,p= 0.01) between rabies incidence inD.rotundus(rates per million humans: 1.61, 0.94, and 1.09, respectively) and rabies outbreaks in cattle (rates per million cattle: 465.85, 351.01, and 48.22, respectively). A sustained, standardized, and widespread monitoring ofD.rotundusdemography and health could serve to inform an early warning system for the early detection of RABV and other bat-borne pathogens in Latin America. Current data can be used to forecast when, where, and in which intensity RABV outbreaks are more likely to occur in subtropical and tropical Latin America. A decrease in the size of outbreaks could suggest that strategies for epidemic management (e.g., education, early diagnosis, vaccination) have been effective. The increase in the number of outbreaks could suggest that the factors facilitating cross-species transmission could be on the rise. 
    more » « less
  4. Abstract BackgroundThe term virus ‘spillover’ embodies a highly complex phenomenon and is often used to refer to viral transmission from a primary reservoir host to a new, naïve yet susceptible and permissive host species. Spillover transmission can result in a virus becoming pathogenic, causing disease and death to the new host if successful infection and transmission takes place. Main textThe scientific literature across diverse disciplines has used the terms virus spillover, spillover transmission, cross-species transmission, and host shift almost indistinctly to imply the complex process of establishment of a virus from an original host (source/donor) to a naïve host (recipient), which have close or distant taxonomic or evolutionary ties. Spillover transmission may result in unsuccessful onward transmission, if the virus dies off before propagation. Alternatively, successful viral establishment in the new host can occur if subsequent secondary transmission among individuals of the same novel species and among other sympatric susceptible species occurred. As such, virus spillover transmission is a common yet highly complex phenomenon that encompasses multiple subtle stages that can be deconstructed to be studied separately to better understand the drivers of disease emergence. Rabies virus (RABV) is a well-documented viral pathogen which still inflicts heavy impact on humans, companion animals, wildlife, and livestock throughout Latin America due substantial spatial temporal and ecological—natural and expansional—overlap with several virus reservoir hosts. Thereby, the rabies disease system represents a robust avenue through which the drivers and uncertainties surrounding spillover transmission can be unravel at its different subtle stages to better understand how they may be affected by coarse, medium, and fine scale variables. ConclusionsThe continued study of viral spillover transmission necessitates the elucidation of its complexities to better assess the cross-scale impacts of ecological forces linked to the propensity of spillover success. Improving capacities to reconstruct and predict spillover transmission would prevent public health impacts on those most at risk populations across the globe. Graphical Abstract: 
    more » « less
  5. Abstract BackgroundVector-borne diseases (VBDs) are important contributors to the global burden of infectious diseases due to their epidemic potential, which can result in significant population and economic impacts. Oropouche fever, caused by Oropouche virus (OROV), is an understudied zoonotic VBD febrile illness reported in Central and South America. The epidemic potential and areas of likely OROV spread remain unexplored, limiting capacities to improve epidemiological surveillance. MethodsTo better understand the capacity for spread of OROV, we developed spatial epidemiology models using human outbreaks as OROV transmission-locality data, coupled with high-resolution satellite-derived vegetation phenology. Data were integrated using hypervolume modeling to infer likely areas of OROV transmission and emergence across the Americas. ResultsModels based on one-support vector machine hypervolumes consistently predicted risk areas for OROV transmission across the tropics of Latin America despite the inclusion of different parameters such as different study areas and environmental predictors. Models estimate that up to 5 million people are at risk of exposure to OROV. Nevertheless, the limited epidemiological data available generates uncertainty in projections. For example, some outbreaks have occurred under climatic conditions outside those where most transmission events occur. The distribution models also revealed that landscape variation, expressed as vegetation loss, is linked to OROV outbreaks. ConclusionsHotspots of OROV transmission risk were detected along the tropics of South America. Vegetation loss might be a driver of Oropouche fever emergence. Modeling based on hypervolumes in spatial epidemiology might be considered an exploratory tool for analyzing data-limited emerging infectious diseases for which little understanding exists on their sylvatic cycles. OROV transmission risk maps can be used to improve surveillance, investigate OROV ecology and epidemiology, and inform early detection. 
    more » « less