For modern switching power supplies, current bulk magnetic materials, such as ferrites or magnetic metal alloys, cannot provide both low loss and high magnetic saturation to function with both high power density and high efficiency at high frequencies (10-100 MHz). Magnetic nanocomposites comprised of a ferrite and magnetic metal alloy provide the opportunity to achieve these desired magnetic properties, but previously investigated thin-film fabrication techniques have difficulty achieving multi-micrometer film thicknesses which are necessary to provide practical magnetic energy storage and power handling. Here, we present a versatile technique to fabricate thick magnetic nanocomposites via a two-step process, consisting of the electrophoretic deposition of an iron oxide nanoparticle phase into a mold on a substrate, followed by electro-infiltration of a nickel matrix. The deposited films are imaged via scanning electron microscopy and energy dispersive X-ray spectroscopy to identify the presence of iron and nickel, confirming the infiltration of the nickel between the iron oxide nanoparticles. A film thickness of ∼7 μm was measured via stylus profilometry. Further confirmation of successful composite formation is obtained with vibrating sample magnetometry, showing the saturation magnetization value of the composite (473 kA/m) falls between that of the iron oxide nanoparticles (280 kA/m) and the nickel matrix (555 kA/m). These results demonstrate the potential of electrophoretic deposition coupled with electro-infiltration to fabricate magnetic nanocomposite films.
more »
« less
Nanoscale structural evaluation of 0-3 magnetic nanocomposites fabricated by electro-infiltration
Magnetic nanocomposites with 0-3 connectivity, whereby a 0D magnetic nanoparticle phase is embedded into a 3D magnetic metal matrix phase, have gained increased interest for use in applications ranging from integrated power inductor cores to exchange-spring magnets. The electro-infiltration process, in which a metal phase is electroplated through a nanoparticle film phase, is an inexpensive approach compatible with semiconductor fabrication methods for the formation of these nanocomposites. Past demonstrations of electro-infiltrated nanocomposites have relied on scanning electron microscopy and energy dispersive x-ray spectroscopy to evaluate the 0-3 composite structure. However, a detailed investigation of the boundary between the particle and metal matrix phases cannot be performed with these tools, and it is unknown whether the particle/matrix interfaces are dense and void-free. This detail is critical, as the presence of even nanoscale voids would affect any potential magnetic exchange coupling and hence the overall electromagnetic properties of the material. This work seeks to explore the phase boundary of 0-3 magnetic nanocomposite fabricated by electro-infiltration by using scanning transmission electron microscopy and energy-dispersive x-ray spectroscopy to analyze the nanostructure of two different composites—a nickel/iron-oxide composite and a permalloy/iron-oxide composite. High-resolution imaging indicates that the interface between the particle phase and matrix phase is dense and void-free. These results will help guide future studies on the design and implementation of these magnetic nanocomposites for end applications.
more »
« less
- Award ID(s):
- 1727930
- PAR ID:
- 10596934
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- AIP Advances
- Volume:
- 9
- Issue:
- 12
- ISSN:
- 2158-3226
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Structurally stabilized composites are promising for using phase change materials in high‐temperature thermal energy storage (TES). However, conventional skeleton materials, which typically comprise 30–50 wt% of the composite, mainly provide sensible heat storage and contribute minimally to overall energy density. This study introduces a new class of redox‐active oxide‐molten salt (ROMS) composites that overcome this limitation by combining sensible, latent, and thermochemical heat storage in a single particle. Specifically, porous, redox‐active Ca2AlMnO5+δ(CAM) complex oxide particles were demonstrated as a suitable support matrix, with the pores filled by eutectic NaCl/CaCl2salt. X‐ray diffraction confirms excellent phase compatibility between CAM and the salt. Scanning electron microscopy/energy dispersive X‐ray spectroscopy and nano X‐ray tomography show good salt infiltration and wettability within the CAM pores. Thermogravimetric analysis reveals that a 60 wt% CAM/40 wt% salt composite achieves an energy density of 267 kJ kg−1over a narrow 150 °C window, with ≈50 kJ kg−1from thermochemical storage. Additionally, the composite shows higher thermal conductivity than salt alone, enabling faster energy storage and release. ROMS composites thus represent a novel and efficient solution for high‐performance TES.more » « less
-
Potassium is used extensively as a promoter with iron catalysts in Fisher–Tropsch synthesis, water–gas shift reactions, steam reforming, and alcohol synthesis. In this paper, the identification of potassium chemical states on the surface of iron catalysts is studied to improve our understanding of the catalytic system. Herein, potassium-doped iron oxide (α-Fe2O3) nanomaterials are synthesized under variable calcination temperatures (400–800 °C) using an incipient wetness impregnation method. The synthesis also varies the content of potassium nitrate deposited on superfine iron oxide with a diameter of 3 nm (Nanocat®) to reach atomic ratios of 100 Fe:x K (x = 0–5). The structure, composition, and properties of the synthesized materials are investigated by X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, Fourier-transform infrared, Raman spectroscopy, inductively coupled plasma-atomic emission spectroscopy, and X-ray photoelectron spectroscopy, as well as transmission electron microscopy, with energy-dispersive X-ray spectroscopy and selected area electron diffraction. The hematite phase of iron oxide retains its structure up to 700 °C without forming any new mixed phase. For compositions as high as 100 Fe:5 K, potassium nitrate remains stable up to 400 °C, but at 500 °C, it starts to decompose into nitrites and, at only 800 °C, it completely decomposes to potassium oxide (K2O) and a mixed phase, K2Fe22O34. The doping of potassium nitrate on the surface of α-Fe2O3 provides a new material with potential applications in Fisher–Tropsch catalysis, photocatalysis, and photoelectrochemical processes.more » « less
-
Nanocomposites consisting of nanoparticles of iron oxide (Fe3O4) and iron carbide (Fe3C) with a core-shell structure (Fe core, Fe3O4 and/or Fe3C shells) coated with additional graphite-like carbon layer dispersed in carbon matrix have been synthesized by solid-phase pyrolysis of iron-phthalocyanine (FePc) and iron-porphyrin (FePr) with a pyrolysis temperature of 900°C, and post-annealing conducted at temperatures ranging from 150°C to 550°C under controlled oxygen- and/or nitrogen-rich environments. A comprehensive analysis of the samples’ morphology, composition, structure, size, and magnetic characteristics was performed by utilizing scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-STEM) with elemental mapping, X-ray diffraction analysis (XRD), and magnetic measurements by utilizing vibrating sample magnetometry (VSM). The effect of the annealing process on magnetic performance and efficient control of the hysteresis loop and specific absorption rate (SAR) are discussed.more » « less
-
Bismuth ferrite (BiFeO3) nanocomposites were synthesized using a novel nano-agitator bead milling method followed by calcination. Bismuth oxide and iron oxide nanoparticles were mixed in a stoichiometric ratio and milled for 3 h and calcined at 650 °C in air. X-ray diffraction with Rietveld refinement, scanning electron microscopy, and transmission electron microscopy techniques were used to elucidate the structure of BiFeO3. The particle diameter was found to be ∼17 nm. Magnetic and electrical measurements were performed, and these results were compared with those of similar methods. Mostly, BiFeO3 was obtained with minor secondary phase formation. The resulting powder was weakly ferromagnetic with a remnant magnetization of 0.078 emu/g. This can be attributed to residual strain and defects introduced during the milling process. Electrical testing revealed a high leakage current density that is typical of undoped bismuth ferrite.more » « less
An official website of the United States government
