skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 12, 2026

Title: Deciphering the structural consequences of R83 and R152 methylation on DNA polymerase β using molecular modeling
DNA polymerase β, a member of the X-family of DNA polymerases, undergoes complex regulations both in vitro and in vivo through various posttranslational modifications, including phosphorylation and methylation. The impact of these modifications varies depending on the specific amino acid undergoing alterations. In vitro, methylation of DNA polymerase β with the enzyme protein arginine methyltransferase 6 (PRMT6) at R83 and R152 enhances polymerase activity by improving DNA binding and processivity. Although these studies have shown that methylation improves DNA binding, the underlying mechanism of enhancement of polymerase activity in terms of structure and dynamics remains poorly understood. To address this gap, we modeled the methylated enzyme/DNA complex and conducted a microsecond-long simulation in the presence of Mg ions. Our results revealed significant structural changes induced by methylating both R83 and R152 sites in the enzyme. Specifically, these changes caused the DNA fragment to move closer to the C- and N-subdomains, forming additional hydrogen bonds. Furthermore, the cross-correlation map demonstrated that methylation enhanced long-range correlations within the domains/subdomains of DNA polymerase β, along with an increase in the linear mutual information value between the domains/subdomains and DNA fragments. The graph connectivity network also illustrated that methylation modulates the information pathway and identifies residues exhibiting long-distance coupling with the methylated sites. Our results provide an atomic-level understanding of the structural transition induced by methylation, shedding light on the mechanisms underlying the methylation-induced enhancement of activity in DNA polymerase β.  more » « less
Award ID(s):
2019745
PAR ID:
10597058
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Selvaraj, Chandrabose
Publisher / Repository:
The Public Library of Science
Date Published:
Journal Name:
PLOS ONE
Volume:
20
Issue:
3
ISSN:
1932-6203
Page Range / eLocation ID:
e0318614
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. DNA polymerase β (pol β ) is a member of the X- family of DNA polymerases that catalyze the distributive addition of nucleoside triphosphates during base excision DNA repair. Previous studies showed that the enzyme was phosphorylated in vitro with PKC at two serines (44 and 55), causing loss of DNA polymerase activity but not DNA binding. In this work, we have investigated the phosphorylation-induced conformational changes in DNA polymerase β in the presence of Mg ions. We report a comprehensive atomic resolution study of wild type and phosphorylated DNA polymerase using molecular dynamics (MD) simulations. The results are examined via novel methods of internal dynamics and energetics analysis to reveal the underlying mechanism of conformational transitions observed in DNA pol β . The results show drastic conformational changes in the structure of DNA polymerase β due to S44 phosphorylation. Phosphorylation-induced conformational changes transform the enzyme from a closed to an open structure. The dynamic cross-correlation shows that phosphorylation enhances the correlated motions between the different domains. Centrality network analysis reveals that the S44 phosphorylation causes structural rearrangements and modulates the information pathway between the Lyase domain and base pair binding domain. Further analysis of our simulations reveals that a critical hydrogen bond (between S44 and E335) disruption and the formation of three additional salt bridges are potential drivers of these conformational changes. In addition, we found that two of these additional salt bridges form in the presence of Mg ions on the active sites of the enzyme. These results agree with our previous study of DNA pol β S44 phosphorylation without Mg ions which predicted the deactivation of DNA pol β . However, the phase space of structural transitions induced by S44 phosphorylation is much richer in the presence of Mg ions. 
    more » « less
  2. Abstract Algal symbiont shuffling in favour of more thermotolerant species has been shown to enhance coral resistance to heat‐stress. Yet, the mechanistic underpinnings and long‐term implications of these changes are poorly understood. This work studied the modifications in coral DNA methylation, an epigenetic mechanism involved in coral acclimatization, in response to symbiont manipulation and subsequent heat stress exposure. Symbiont composition was manipulated in the great star coralMontastraea cavernosathrough controlled thermal bleaching and recovery, producing paired ramets of three genets dominated by either their native symbionts (genusCladocopium) or the thermotolerant species (Durusdinium trenchi). Single‐base genome‐wide analyses showed significant modifications in DNA methylation concentrated in intergenic regions, introns and transposable elements. Remarkably, DNA methylation changes in response to heat stress were dependent on the dominant symbiont, with twice as many differentially methylated regions found in heat‐stressed corals hosting different symbionts (Cladocopiumvs.D.trenchii) compared to all other comparisons. Interestingly, while differential gene body methylation was not correlated with gene expression, an enrichment in differentially methylated regions was evident in repetitive genome regions. Overall, these results suggest that changes in algal symbionts favouring heat tolerant associations are accompanied by changes in DNA methylation in the coral host. The implications of these results for coral adaptation, along with future avenues of research based on current knowledge gaps, are discussed in the present work. 
    more » « less
  3. Abstract Background As human activity alters the planet, there is a pressing need to understand how organisms adapt to environmental change. Of growing interest in this area is the role of epigenetic modifications, such as DNA methylation, in tailoring gene expression to fit novel conditions. Here, we reanalyzed nine invertebrate (Anthozoa and Hexapoda) datasets to validate a key prediction of this hypothesis: changes in DNA methylation in response to some condition correlate with changes in gene expression. Results In accord with previous observations, baseline levels of gene body methylation (GBM) positively correlated with transcription, and negatively correlated with transcriptional variation between conditions. Correlations between changes in GBM and transcription, however, were negligible. There was also no consistent negative correlation between methylation and transcription at the level of gene body methylation class (either highly- or lowly-methylated), anticipated under the previously described “seesaw hypothesis”. Conclusion Our results do not support the direct involvement of GBM in regulating dynamic transcriptional responses in invertebrates. If changes in DNA methylation regulate invertebrate transcription, the mechanism must involve additional factors or regulatory influences. 
    more » « less
  4. Abstract N6‐adenine (6mA) DNA methylation plays an important role in gene regulation and genome stability. The 6mA methylation inTetrahymena thermophilais mainly mediated by the AMT complex, comprised of the AMT1, AMT7, AMTP1, and AMTP2 subunits. To date, how this complex assembles on the DNA substrate remains elusive. Here we report the structure of the AMT complex bound to the OCR protein from bacteriophage T7, mimicking the AMT–DNA encounter complex. The AMT1–AMT7 heterodimer approaches OCR from one side, while the AMTP1 N‐terminal domain, assuming a homeodomain fold, binds to OCR from the other side, resulting in a saddle‐shaped architecture reminiscent of what was observed for prokaryotic 6mA writers. Mutation of the AMT1, AMT7, and AMTP1 residues on the OCR‐contact points led to impaired DNA methylation activity to various extents, supporting a role for these residues in DNA binding. Furthermore, structural comparison of the AMT1–AMT7 subunits with the evolutionarily related METTL3–METTL14 and AMT1–AMT6 complexes reveals sequence conservation and divergence in the region corresponding to the OCR‐binding site, shedding light on the substrate binding of the latter two complexes. Together, this study supports a model in which the AMT complex undergoes a substrate binding‐induced open‐to‐closed conformational transition, with implications in its substrate binding and processive 6mA methylation. 
    more » « less
  5. Social and behavioral epigenetics is the study of psychosocial factors that impact biology through an epigenetic mechanism. Epigenetic modifications influence the activity of genes without altering the underlying DNA sequence. DNA methylation is one type of epigenetic modification that has been widely studied and found to associate with a broad range of psychosocial stressors. This paper reviews the landmark studies and current innovations. An evolutionary context for epigenetic changes induced by psychosocial stress, and the possible heritability of such changes, is also presented. The involvement of social and behavioral scientists in this emerging field is essential to ensure that the nuances of the psychosocial environment are well understood and accurately modeled. 
    more » « less