Identification of causal direction between a causal-effect pair from observed data has recently attracted much attention. Various methods based on functional causal models have been proposed to solve this problem, by assuming the causal process satisfies some (structural) constraints and showing that the reverse direction violates such constraints. The nonlinear additive noise model has been demonstrated to be effective for this purpose, but the model class is not transitive--even if each direct causal relation follows this model, indirect causal influences, which result from omitted intermediate causal variables and are frequently encountered in practice, do not necessarily follow the model constraints; as a consequence, the nonlinear additive noise model may fail to correctly discover causal direction. In this work, we propose a cascade nonlinear additive noise model to represent such causal influences--each direct causal relation follows the nonlinear additive noise model but we observe only the initial cause and final effect. We further propose a method to estimate the model, including the unmeasured intermediate variables, from data, under the variational auto-encoder framework. Our theoretical results show that with our model, causal direction is identifiable under suitable technical conditions on the data generation process. Simulation results illustrate the power of the proposed method in identifying indirect causal relations across various settings, and experimental results on real data suggest that the proposed model and method greatly extend the applicability of causal discovery based on functional causal models in nonlinear cases. 
                        more » 
                        « less   
                    This content will become publicly available on April 24, 2026
                            
                            A Skewness-Based Criterion for Addressing Heteroscedastic Noise in Causal Discovery
                        
                    
    
            Real-world data often violates the equal-variance assumption (homoscedasticity), making it essential to account for heteroscedastic noise in causal discovery. In this work, we explore heteroscedastic symmetric noise models (HSNMs), where the effect Y is modeled as Y = f(X) + σ(X)N, with X as the cause and N as independent noise following a symmetric distribution. We introduce a novel criterion for identifying HSNMs based on the skewness of the score (i.e., the gradient of the log density) of the data distribution. This criterion establishes a computationally tractable measurement that is zero in the causal direction but nonzero in the anticausal direction, enabling the causal direction discovery. We extend this skewness-based criterion to the multivariate setting and propose SkewScore, an algorithm that handles heteroscedastic noise without requiring the extraction of exogenous noise. We also conduct a case study on the robustness of SkewScore in a bivariate model with a latent confounder, providing theoretical insights into its performance. Empirical studies further validate the effectiveness of the proposed method. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2428058
- PAR ID:
- 10597118
- Publisher / Repository:
- OpenReview.net
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            This paper studies M-estimators with gradient-Lipschitz loss function regularized with convex penalty in linear models with Gaussian design matrix and arbitrary noise distribution. A practical example is the robust M-estimator constructed with the Huber loss and the Elastic-Net penalty and the noise distribution has heavy-tails. Our main contributions are three-fold. (i) We provide general formulae for the derivatives of regularized M-estimators $$\hat\beta(y,X)$$ where differentiation is taken with respect to both X and y; this reveals a simple differentiability structure shared by all convex regularized M-estimators. (ii) Using these derivatives, we characterize the distribution of the residuals in the intermediate high-dimensional regime where dimension and sample size are of the same order. (iii) Motivated by the distribution of the residuals, we propose a novel adaptive criterion to select tuning parameters of regularized M-estimators. The criterion approximates the out-of-sample error up to an additive constant independent of the estimator, so that minimizing the criterion provides a proxy for minimizing the out-of-sample error. The proposed adaptive criterion does not require the knowledge of the noise distribution or of the covariance of the design. Simulated data confirms the theoretical findings, regarding both the distribution of the residuals and the success of the criterion as a proxy of the out-of-sample error. Finally our results reveal new relationships between the derivatives of the $$\hat\beta$$ and the effective degrees of freedom of the M-estimators, which are of independent interest.more » « less
- 
            We study the problem of efficiently estimating the effect of an intervention on a single variable using observational samples. Our goal is to give algorithms with polynomial time and sample complexity in a non-parametric setting. Tian and Pearl (AAAI ’02) have exactly characterized the class of causal graphs for which causal effects of atomic interventions can be identified from observational data. We make their result quantitative. Suppose 𝒫 is a causal model on a set V of n observable variables with respect to a given causal graph G, and let do(x) be an identifiable intervention on a variable X. We show that assuming that G has bounded in-degree and bounded c-components (k) and that the observational distribution satisfies a strong positivity condition: (i) [Evaluation] There is an algorithm that outputs with probability 2/3 an evaluator for a distribution P^ that satisfies TV(P(V | do(x)), P^(V)) < eps using m=O (n/eps^2) samples from P and O(mn) time. The evaluator can return in O(n) time the probability P^(v) for any assignment v to V. (ii) [Sampling] There is an algorithm that outputs with probability 2/3 a sampler for a distribution P^ that satisfies TV(P(V | do(x)), P^(V)) < eps using m=O (n/eps^2) samples from P and O(mn) time. The sampler returns an iid sample from P^ with probability 1 in O(n) time. We extend our techniques to estimate P(Y | do(x)) for a subset Y of variables of interest. We also show lower bounds for the sample complexity, demonstrating that our sample complexity has optimal dependence on the parameters n and eps, as well as if k=1 on the strong positivity parameter.more » « less
- 
            We consider the problem of inferring causal relationships between two or more passively ob-served variables. While the problem of such causal discovery has been extensively studied,especially in the bivariate setting, the majority of current methods assume a linear causal relationship, and the few methods which consider non-linear relations usually make the assumption of additive noise. Here, we propose a framework through which we can perform causal discovery in the presence of general nonlinear relationships. The proposed method is based on recent progress in non-linear in-dependent component analysis (ICA) and exploits the nonstationarity of observations in order to recover the underlying sources. We show rigorously that in the case of bivariate causal discovery, such non-linear ICA can be used to infer causal direction via a series of in-dependence tests. We further propose an alternative measure for inferring causal direction based on asymptotic approximations to the likelihood ratio, as well as an extension to multivariate causal discovery. We demonstrate the capabilities of the proposed method via a series of simulation studies and conclude with an application to neuroimaging data.more » « less
- 
            Capturing the underlying structural causal relations represented by Directed Acyclic Graphs (DAGs) has been a fundamental task in various AI disciplines. Causal DAG learning via the continuous optimization framework has recently achieved promising performance in terms of accuracy and efficiency. However, most methods make strong assumptions of homoscedastic noise, i.e., exogenous noises have equal variances across variables, observations, or even both. The noises in real data usually violate both assumptions due to the biases introduced by different data collection processes. To address the heteroscedastic noise issue, we introduce relaxed implementable sufficient conditions and prove the identifiability of a general class of SEM subject to those conditions. Based on the identifiable general SEM, we propose a novel formulation for DAG learning which accounts for the noise variance variation across variables and observations. We then propose an effective two-phase iterative DAG learning algorithm to address the increasing optimization difficulties and learn a causal DAG from data with heteroscedastic variables noise under varying variance. We show significant empirical gains of the proposed approaches over state-of-the-art methods on both synthetic data and real data.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
