skip to main content


Title: Causal Discovery with General Non-Linear Relationships Using Non-Linear Independent Component Analysis,
We consider the problem of inferring causal relationships between two or more passively ob-served variables. While the problem of such causal discovery has been extensively studied,especially in the bivariate setting, the majority of current methods assume a linear causal relationship, and the few methods which consider non-linear relations usually make the assumption of additive noise. Here, we propose a framework through which we can perform causal discovery in the presence of general nonlinear relationships. The proposed method is based on recent progress in non-linear in-dependent component analysis (ICA) and exploits the nonstationarity of observations in order to recover the underlying sources. We show rigorously that in the case of bivariate causal discovery, such non-linear ICA can be used to infer causal direction via a series of in-dependence tests. We further propose an alternative measure for inferring causal direction based on asymptotic approximations to the likelihood ratio, as well as an extension to multivariate causal discovery. We demonstrate the capabilities of the proposed method via a series of simulation studies and conclude with an application to neuroimaging data.  more » « less
Award ID(s):
1829681
NSF-PAR ID:
10125760
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of Conference on Uncertainty in Artificial Intelligence (UAI) 2019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chaudhuri, Kamalika ; Jegelka, Stefanie ; Song, Le ; Szepesvari, Csaba ; Niu, Gang ; Sabato, Sivan (Ed.)
    Traditional causal discovery methods mainly focus on estimating causal relations among measured variables, but in many real-world problems, such as questionnaire-based psychometric studies, measured variables are generated by latent variables that are causally related. Accordingly, this paper investigates the problem of discovering the hidden causal variables and estimating the causal structure, including both the causal relations among latent variables and those between latent and measured variables. We relax the frequently-used measurement assumption and allow the children of latent variables to be latent as well, and hence deal with a specific type of latent hierarchical causal structure. In particular, we define a minimal latent hierarchical structure and show that for linear non-Gaussian models with the minimal latent hierarchical structure, the whole structure is identifiable from only the measured variables. Moreover, we develop a principled method to identify the structure by testing for Generalized Independent Noise (GIN) conditions in specific ways. Experimental results on both synthetic and real-world data show the effectiveness of the proposed approach. 
    more » « less
  2. This paper investigates the problem of selecting instrumental variables relative to a target causal influence X→Y from observational data generated by linear non-Gaussian acyclic causal models in the presence of unmeasured confounders. We propose a necessary condition for detecting variables that cannot serve as instrumental variables. Unlike many existing conditions for continuous variables, i.e., that at least two or more valid instrumental variables are present in the system, our condition is designed with a single instrumental variable. We then characterize the graphical implications of our condition in linear non-Gaussian acyclic causal models. Given that the existing graphical criteria for the instrument validity are not directly testable given observational data, we further show whether and how such graphical criteria can be checked by exploiting our condition. Finally, we develop a method to select the set of candidate instrumental variables given observational data. Experimental results on both synthetic and real-world data show the effectiveness of the proposed method. 
    more » « less
  3. Network alignment is a fundamental task in many high-impact applications. Most of the existing approaches either explicitly or implicitly consider the alignment matrix as a linear transformation to map one network to another, and might overlook the complicated alignment relationship across networks. On the other hand, node representation learning based alignment methods are hampered by the incomparability among the node representations of different networks. In this paper, we propose a unified semi-supervised deep model (ORIGIN) that simultaneously finds the non-rigid network alignment and learns node representations in multiple networks in a mutually beneficial way. The key idea is to learn node representations by the effective graph convolutional networks, which subsequently enable us to formulate network alignment as a point set alignment problem. The proposed method offers two distinctive advantages. First (node representations), unlike the existing graph convolutional networks that aggregate the node information within a single network, we can effectively aggregate the auxiliary information from multiple sources, achieving far-reaching node representations. Second (network alignment), guided by the highquality node representations, our proposed non-rigid point set alignment approach overcomes the bottleneck of the linear transformation assumption. We conduct extensive experiments that demonstrate the proposed non-rigid alignment method is (1) effective, outperforming both the state-of-the-art linear transformation-based methods and node representation based methods, and (2) efficient, with a comparable computational time between the proposed multi-network representation learning component and its single-network counterpart. 
    more » « less
  4. Identification of causal direction between a causal-effect pair from observed data has recently attracted much attention. Various methods based on functional causal models have been proposed to solve this problem, by assuming the causal process satisfies some (structural) constraints and showing that the reverse direction violates such constraints. The nonlinear additive noise model has been demonstrated to be effective for this purpose, but the model class is not transitive--even if each direct causal relation follows this model, indirect causal influences, which result from omitted intermediate causal variables and are frequently encountered in practice, do not necessarily follow the model constraints; as a consequence, the nonlinear additive noise model may fail to correctly discover causal direction. In this work, we propose a cascade nonlinear additive noise model to represent such causal influences--each direct causal relation follows the nonlinear additive noise model but we observe only the initial cause and final effect. We further propose a method to estimate the model, including the unmeasured intermediate variables, from data, under the variational auto-encoder framework. Our theoretical results show that with our model, causal direction is identifiable under suitable technical conditions on the data generation process. Simulation results illustrate the power of the proposed method in identifying indirect causal relations across various settings, and experimental results on real data suggest that the proposed model and method greatly extend the applicability of causal discovery based on functional causal models in nonlinear cases.

     
    more » « less
  5. Recently, many regression based conditional independence (CI) test methods have been proposed to solve the problem of causal discovery. These methods provide alternatives to test CI by first removing the information of the controlling set from the two target variables, and then testing the independence between the corresponding residuals Res1 and Res2. When the residuals are linearly uncorrelated, the independence test between them is nontrivial. With the ability to calculate inner product in high-dimensional space, kernel-based methods are usually used to achieve this goal, but still consume considerable time. In this paper, we investigate the independence between two linear combinations under linear non-Gaussian structural equation model. We show that the dependence between the two residuals can be captured by the difference between the similarity of (Res1, Res2) and that of (Res1, Res3) (Res3 is generated by random permutation) in high-dimensional space. With this result, we design a new method called SCIT for CI test, where permutation test is performed to control Type I error rate. The proposed method is simpler yet more efficient and effective than the existing ones. When applied to causal discovery, the proposed method outperforms the counterparts in terms of both speed and Type II error rate, especially in the case of small sample size, which is validated by our extensive experiments on various datasets. 
    more » « less