skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Hubble Tension in Our Own Backyard: DESI and the Nearness of the Coma Cluster
Abstract The Dark Energy Spectroscopic Instrument (DESI) collaboration measured a tight relation between the Hubble constant (H0) and the distance to the Coma cluster using the fundamental plane (FP) relation of the deepest, most homogeneous sample of early-type galaxies. To determineH0, we measure the distance to Coma by several independent routes, each with its own geometric reference. We measure the most precise distance to Coma from 13 Type Ia supernovae (SNe Ia) in the cluster with a mean standardized brightness of m B 0 = 15.710 ± 0.040 mag. Calibrating the absolute magnitude of SNe Ia with the Hubble Space Telescope (HST) distance ladder yieldsDComa = 98.5 ± 2.2 Mpc, consistent with its canonical value of 95–100 Mpc. This distance results inH0 = 76.5 ± 2.2 km s−1Mpc−1from the DESI FP relation. Inverting the DESI relation by calibrating it instead to the Planck+ΛCDM value ofH0 = 67.4 km s−1Mpc−1implies a much greater distance to Coma,DComa = 111.8 ± 1.8 Mpc, 4.6σbeyond a joint, direct measure. Independent of SNe Ia, the HST Key Project FP relation as calibrated by Cepheids, the tip of the red giant branch from JWST, or HST near-infrared surface brightness fluctuations all yieldDComa < 100 Mpc, in joint tension themselves with the Planck-calibrated route at >3σ. From a broad array of distance estimates compiled back to 1990, it is hard to see how Coma could be located as far as the Planck+ΛCDM expectation of >110 Mpc. By extending the Hubble diagram to Coma, a well-studied location in our own backyard whose distance was in good accord well before the Hubble tension, DESI indicates a more pervasive conflict between our knowledge of local distances and cosmological expectations. We expect future programs to refine the distance to Coma and nearer clusters to help illuminate this new local window on the Hubble tension.  more » « less
Award ID(s):
2407632 2429450
PAR ID:
10597121
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Astrophysical Journal Letters
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
979
Issue:
1
ISSN:
2041-8205
Page Range / eLocation ID:
L9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present cosmological constraints from a gravitational lensing mass map covering 9400 deg2reconstructed from measurements of the cosmic microwave background (CMB) made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with measurements of baryon acoustic oscillations and big bang nucleosynthesis, we obtain the clustering amplitudeσ8= 0.819 ± 0.015 at 1.8% precision, S 8 σ 8 ( Ω m / 0.3 ) 0.5 = 0.840 ± 0.028 , and the Hubble constantH0= (68.3 ± 1.1) km s−1Mpc−1at 1.6% precision. A joint constraint with Planck CMB lensing yieldsσ8= 0.812 ± 0.013, S 8 σ 8 ( Ω m / 0.3 ) 0.5 = 0.831 ± 0.023 , andH0= (68.1 ± 1.0) km s−1Mpc−1. These measurements agree with ΛCDM extrapolations from the CMB anisotropies measured by Planck. We revisit constraints from the KiDS, DES, and HSC galaxy surveys with a uniform set of assumptions and find thatS8from all three are lower than that from ACT+Planck lensing by levels ranging from 1.7σto 2.1σ. This motivates further measurements and comparison, not just between the CMB anisotropies and galaxy lensing but also between CMB lensing probingz∼ 0.5–5 on mostly linear scales and galaxy lensing atz∼ 0.5 on smaller scales. We combine with CMB anisotropies to constrain extensions of ΛCDM, limiting neutrino masses to ∑mν< 0.13 eV (95% c.l.), for example. We describe the mass map and related data products that will enable a wide array of cross-correlation science. Our results provide independent confirmation that the universe is spatially flat, conforms with general relativity, and is described remarkably well by the ΛCDM model, while paving a promising path for neutrino physics with lensing from upcoming ground-based CMB surveys. 
    more » « less
  2. Abstract We cross-check the Hubble Space Telescope (HST) Cepheid/Type Ia supernova (SN Ia) distance ladder, which yields the most precise localH0, against early James Webb Space Telescope (JWST) subsamples (∼1/4 of the HST sample) from SH0ES and CCHP, calibrated only with NGC 4258. We find HST Cepheid distances agree well (∼1σ) with all combinations of methods, samples, and telescopes. The comparisons explicitly include the measurement uncertainty of each method in NGC 4258, an oft-neglected but dominant term. Mean differences are ∼0.03 mag, far smaller than the 0.18 mag “Hubble tension.” Combining all measures produces the strongest constraint yet on the linearity of HST Cepheid distances, 0.994 ±0.010, ruling out distance-dependent bias or offset as the source of the tension at ∼7σ. However, current JWST subsamples produce large sampling differences in H0whose size and direction we can directly estimate from the full HST set. We show that ΔH0∼ 2.5 km s−1Mpc−1between the CCHP JWST program and the full HST sample is entirely consistent with differences in sample selection. We combine all JWST samples into a new distance-limited set of 16 SNe Ia atD≤ 25 Mpc. Using JWST Cepheids, JAGB, and tip of the red giant branch, we find 73.4 ± 2.1, 72.2 ± 2.2, and 72.1 ± 2.2 km s−1Mpc−1, respectively. Explicitly accounting for common supernovae, the three-method JWST result isH0= 72.6 ± 2.0, similar toH0= 72.8 expected from HST Cepheids in the same galaxies. The small JWST sample trivially lowers the Hubble tension significance due to small-sample statistics and is not yet competitive with the HST set (42 SNe Ia and 4 anchors), which yields 73.2 ± 0.9. Still, the joint JWST sample provides important cross-checks that the HST data pass. 
    more » « less
  3. Abstract The tip of the red giant branch provides a luminous standard candle for calibrating distance ladders that reach Type Ia supernova (SN Ia) hosts. However, recent work reveals that tip measurements vary at the ∼0.1 mag level for different stellar populations and locations within a host, which may lead to inconsistencies along the distance ladder. We pursue a calibration of the tip using 11 Hubble Space Telescope fields around the maser host, NGC 4258, that is consistent with SN Ia hosts by standardizing tip measurements via their contrast ratios. We find F814W-band tips that exhibit a full 0.3 mag range and 0.1 mag dispersion. We do not find any correlation between Hicolumn density and the apparent tip to 0.04 ± 0.03 mag/cm−2. We search for a tip–contrast relation (TCR) and measure the TCR within the fields of NGC 4258 of −0.015 ± 0.008 mag/R, whereRis the contrast ratio. This value is consistent with the TCR originally discovered in the GHOSTS sample of −0.023 ± 0.005 mag/R. Combining these measurements, we find a global TCR of −0.021 ± 0.004 mag/Rand a calibration of M I TRGB = 4.025 ± 0.035 ( R 4 ) × 0.021 mag. We also use stellar models to simulate single age and metallicity stellar populations with [Fe/H] from −2.0 to −0.7 and ages from 3 to 12 Gyr and reconstruct the global TCR found here to a factor of ∼2. This work is combined in a companion analysis with tip measurements of nearby SN Ia hosts to measureH0
    more » « less
  4. Abstract We present cosmological constraints from the sample of Type Ia supernovae (SNe Ia) discovered and measured during the full 5 yr of the Dark Energy Survey (DES) SN program. In contrast to most previous cosmological samples, in which SNe are classified based on their spectra, we classify the DES SNe using a machine learning algorithm applied to their light curves in four photometric bands. Spectroscopic redshifts are acquired from a dedicated follow-up survey of the host galaxies. After accounting for the likelihood of each SN being an SN Ia, we find 1635 DES SNe in the redshift range 0.10 <z< 1.13 that pass quality selection criteria sufficient to constrain cosmological parameters. This quintuples the number of high-qualityz> 0.5 SNe compared to the previous leading compilation of Pantheon+ and results in the tightest cosmological constraints achieved by any SN data set to date. To derive cosmological constraints, we combine the DES SN data with a high-quality external low-redshift sample consisting of 194 SNe Ia spanning 0.025 <z< 0.10. Using SN data alone and including systematic uncertainties, we find ΩM= 0.352 ± 0.017 in flat ΛCDM. SN data alone now require acceleration (q0< 0 in ΛCDM) with over 5σconfidence. We find ( Ω M , w ) = ( 0.264 0.096 + 0.074 , 0.80 0.16 + 0.14 ) in flatwCDM. For flatw0waCDM, we find ( Ω M , w 0 , w a ) = ( 0.495 0.043 + 0.033 , 0.36 0.30 + 0.36 , 8.8 4.5 + 3.7 ) , consistent with a constant equation of state to within ∼2σ. Including Planck cosmic microwave background, Sloan Digital Sky Survey baryon acoustic oscillation, and DES 3 × 2pt data gives (ΩM,w) = (0.321 ± 0.007, −0.941 ± 0.026). In all cases, dark energy is consistent with a cosmological constant to within ∼2σ. Systematic errors on cosmological parameters are subdominant compared to statistical errors; these results thus pave the way for future photometrically classified SN analyses. 
    more » « less
  5. Abstract Supernova (SN) SN H0pe is a gravitationally lensed, triply imaged, Type Ia SN (SN Ia) discovered in James Webb Space Telescope imaging of the PLCK G165.7+67.0 cluster of galaxies. Well-observed multiply imaged SNe provide a rare opportunity to constrain the Hubble constant (H0), by measuring the relative time delay between the images and modeling the foreground mass distribution. SN H0pe is located atz= 1.783 and is the first SN Ia with sufficient light-curve sampling and long enough time delays for anH0inference. Here we present photometric time-delay measurements and SN properties of SN H0pe. Using JWST/NIRCam photometry, we measure time delays of Δtab= 116.6 9.3 + 10.8 observer-frame days and Δtcb= 48.6 4.0 + 3.6 observer-frame days relative to the last image to arrive (image 2b; all uncertainties are 1σ), which corresponds to a ∼5.6% uncertainty contribution forH0assuming 70 km s−1Mpc−1. We also constrain the absolute magnification of each image toμa= 4.3 1.8 + 1.6 b= 7.6 2.6 + 3.6 c= 6.4 1.5 + 1.6 by comparing the observed peak near-IR magnitude of SN H0pe to the nonlensed population of SNe Ia. 
    more » « less