skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A non-intrusive reduced order model using deep learning for realistic wind data generation for small unmanned aerial systems in urban spaces
Realistic wind data are essential in developing, testing, and ensuring the safety of unmanned aerial systems in operation. Alternatives to Dryden and von Kármán turbulence models are required, aimed explicitly at urban air spaces to generate turbulent wind data. We present a novel method to generate realistic wind data for the safe operation of small unmanned aerial vehicles in urban spaces. We propose a non-intrusive reduced order modeling approach to replicate realistic wind data and predict wind fields. The method uses a well-established large-eddy simulation model, the parallelized large eddy simulation model, to generate high-fidelity data. To create a reduced-order model, we utilize proper orthogonal decomposition to extract modes from the three-dimensional space and use specialized recurrent neural networks and long-term short memory for stepping in time. This paper combines the traditional approach of using computational fluid dynamic simulations to generate wind data with deep learning and reduced-order modeling techniques to devise a methodology for a non-intrusive data-based model for wind field prediction. A simplistic model of an isolated urban subspace with a single building setup in neutral atmospheric conditions is considered a test case for the demonstration of the method.  more » « less
Award ID(s):
1925147
PAR ID:
10597310
Author(s) / Creator(s):
;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
AIP Advances
Volume:
12
Issue:
8
ISSN:
2158-3226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Advanced Aerial Mobility (AAM) platforms are poised to begin high-density operations in urban areas nationwide. This new category of aviation platforms spans a broad range of sizes, from small package delivery drones to passenger-carrying vehicles. Unlike traditional aircraft, AAM vehicles operate within the urban boundary layer, where large structures, such as buildings, interrupt the flow. This study examines the response of a package delivery drone, a general aviation aircraft, and a passenger-carrying urban air mobility aircraft through an urban wind field generated using Large Eddy Simulations (LES). Since it is burdensome to simulate flight dynamics in real-time using the full-order solution, reduced-order wind models are created. Comparing trajectories for each aircraft platform using full-order or reduced-order solutions reveals little difference; reduced-order wind representations appear sufficient to replicate trajectories as long as the spatiotemporal wind field is represented. However, examining control usage statistics and time histories creates a stark difference between the wind fields, especially for the lower wing-loading package delivery drone where control saturation was encountered. The control saturation occurrences were inconsistent across the full-order and reduced-order winds, advising caution when using reduced-order models for lightly wing-loaded aircraft. The results presented demonstrate the effectiveness of using a simulation environment to evaluate reduced-order models by directly comparing their trajectories and control activity metrics with the full-order model. This evaluation provides designers valuable insights for making informed decisions for disturbance rejection systems. Additionally, the results indicate that using Reynolds-averaged Navier–Stokes (RANS) solutions to represent urban wind fields is inappropriate. It was observed that the mean wind field trajectories fall outside the 95% confidence intervals, a finding consistent with the authors’ previous research. 
    more » « less
  2. Abstract The concept of Advanced Air Mobility involves utilizing cutting-edge transportation platforms to transport passengers and cargo efficiently over short distances in urban and suburban areas. However, using simplified atmospheric models for aircraft simulations can prove insufficient for modeling large disturbances impacting low-altitude flight regimes. Due to the complexities of operating in urban environments, realistic wind modeling is necessary to ensure trajectory planning and control design can maintain high levels of safety. In this study, we simulate the dynamic response of a representative advanced air mobility platform operating in wing-borne flight through an urban wind field generated using Large Eddy Simulations (LES) and a wind field created using reduced-order models based on full-order computational solutions. Our findings show that the longitudinal response of the aircraft was not greatly affected by the fidelity of the LES models or if the spatial variation was considered while evaluating the full-order wind model. This is encouraging as it indicates that the full LES generation of the wind field may not be necessary, which decreases the complexity and time needed in this analysis. Differences are present when comparing the lateral response, owing to the differences in the asymmetric loading of the planform in the full and reduced order models. These differences seen in the lateral responses are expected to increase for planforms with smaller wing loadings, which could pose challenges. Additionally, the response of the aircraft to the mean wind field, the temporal average of the full order model, was misrepresentative in the longitudinal response and greatly under-predicted control surface activity, particularly in the lateral response. 
    more » « less
  3. null (Ed.)
    Unmanned aerial vehicles (UAVs), equipped with a variety of sensors, are being used to provide actionable information to augment first responders’ situational awareness in disaster areas for urban search and rescue (SaR) operations. However, existing aerial robots are unable to sense the occluded spaces in collapsed structures, and voids buried in disaster rubble that may contain victims. In this study, we developed a framework, AiRobSim, to simulate an aerial robot to acquire both aboveground and underground information for post-disaster SaR. The integration of UAV, ground-penetrating radar (GPR), and other sensors, such as global navigation satellite system (GNSS), inertial measurement unit (IMU), and cameras, enables the aerial robot to provide a holistic view of the complex urban disaster areas. The robot-collected data can help locate critical spaces under the rubble to save trapped victims. The simulation framework can serve as a virtual training platform for novice users to control and operate the robot before actual deployment. Data streams provided by the platform, which include maneuver commands, robot states and environmental information, have potential to facilitate the understanding of the decision-making process in urban SaR and the training of future intelligent SaR robots. 
    more » « less
  4. This paper addresses the potential of using unmanned aerial vehicles for conducting fundamental research in the atmospheric boundary layer. A method of computing wind speed from a moving velocity sensor data is provided. The approach is demonstrated for both five-hole probes and hot-wire probes. Included in the procedure is an technique which was shown to provide an invertible, a posteriori calibration for hot-wire voltage data, demonstrated using data from a mid-afternoon flight of an unmanned aerial vehicle equipped with a single-sensor hot-wire probe. Several bulk and small-scale characteristics from small, fixed-wing unmanned aerial vehicle flights in the convective boundary layer are calculated, and show the potential for extracting a range of both large-scale and small-scale turbulence statistics. 
    more » « less
  5. The range and endurance of an unmanned aerial system operating nominally in an outdoor environment depends upon the available power and environmental factors like the magnitude and direction of the prevailing wind. This paper focuses on the development of semi-analytical approaches to computing the range and endurance of battery-powered multi-copter unmanned aerial system under varying wind conditions. The analytically derived range is verified against a comprehensive unmanned aerial system simulation which includes experimentally validated elements such as the propulsion system and electric power consumption modules. It is shown that the analytical approach yields the range maps in close agreement with the simulation results. 
    more » « less