This paper presents a distributed current source (DCS) method for modeling the dynamic responses of eddy current density (ECD) induced in electrical conductors and its corresponding magnetic flux density (MFD); both nonmagnetic and weakly magnetized conductors are considered. Unlike conventional numerical methods such as finite element analysis (FEA), the DCS method, which accounts for the eddy-current and magnetization effects by means of equivalent volume and surface current-sources, derives closed-form solutions to the ECD and MFD fields in state-space representation. The model has been experimentally validated and verified by comparing results from FEA simulations with both harmonic and nonharmonic excitations. To gain physical insights to the measured MFD for simultaneous estimating the material/geometrical properties of a conductor, the static and dynamic responses to rectangular pulsed current excitations have been numerically investigated, confirming the feasibility and effectiveness of the measurement methods.
more »
« less
Closed-form expressions for the magnetic fields of rectangular and circular finite-length solenoids and current loops
A summary of closed-form expressions for the magnetic fields produced by rectangular- and circular-shaped finite-length solenoids and current loops is provided altogether for easy reference. Each expression provides the magnetic field in all space, except locations where a current of infinitesimal thickness is considered to exist. The closed-form expression for the magnetic field of a rectangular-shaped finite-length solenoid is derived using the Biot–Savart law. Closed-form expressions for the magnetic fields of solenoids and current loops can be used to avoid approximations in analytical models and may reduce computation time in computer simulations.
more »
« less
- Award ID(s):
- 1803047
- PAR ID:
- 10597443
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- AIP Advances
- Volume:
- 10
- Issue:
- 6
- ISSN:
- 2158-3226
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We revisit the problem of computing (robust) controlled invariant sets for discrete-time linear systems. Departing from previous approaches, we consider implicit, rather than explicit, representations for controlled invariant sets. Moreover, by considering such representations in the space of states and finite input sequences we obtain closed-form expressions for controlled invariant sets. An immediate advantage is the ability to handle high-dimensional systems since the closed-form expression is computed in a single step rather than iteratively. To validate the proposed method, we present thorough case studies illustrating that in safety-critical scenarios the implicit representation suffices in place of the explicit invariant set. The proposed method is complete in the absence of disturbances, and we provide a weak completeness result when disturbances are present.more » « less
-
Mn 3 Sn, a metallic antiferromagnet with an anti-chiral 120° spin structure, generates intriguing magneto-transport signatures such as a large anomalous Hall effect, spin-polarized current with novel symmetries, anomalous Nernst effect, and magneto-optic Kerr effect. When grown epitaxially as MgO(110)[001]∥Mn3Sn(01¯1¯0)[0001], Mn3Sn experiences a uniaxial tensile strain, which changes the bulk sixfold anisotropy to a twofold perpendicular magnetic anisotropy (PMA). Here, we investigate the field-assisted spin–orbit-torque (SOT)-driven dynamics in single-domain Mn3Sn with PMA. We find that for non-zero external magnetic fields, the magnetic octupole moment of Mn3Sn can be switched between the two stable states if the input current is between two field-dependent critical currents. Below the lower critical current, the magnetic octupole moment exhibits a stationary state in the vicinity of the initial stable state. On the other hand, above the higher critical current, the magnetic octupole moment shows oscillatory dynamics which could, in principle, be tuned from the 100s of megahertz to the terahertz range. We obtain approximate analytic expressions of the two critical currents that agree very well with the numerical simulations for experimentally relevant magnetic fields. We also obtain a unified functional form of the switching time vs the input current for different magnetic fields. Finally, we show that for lower values of Gilbert damping (α≲2×10−3), the critical currents and the final steady states depend significantly on α. The numerical and analytic results presented in our work can be used by both theorists and experimentalists to understand the SOT-driven order dynamics in PMA Mn3Sn and design future experiments and devices.more » « less
-
Abstract Buckling is a structural phenomenon that can induce significant motion with minimal input variation. Electrothermal bimorphs, with their simple input and compact design, can leverage out-of-plane buckling motion for a broad range of applications. This paper presents the development of analytical electrothermal and structural models for such bimorphs. The electrothermal model calculates the temperature distribution within the bimorph caused by electrothermal heating, providing a 2D explicit analytical expression for estimating temperature along the bimorph’s length and cross-section. Nonhomogeneous heating leads to varying strains, which induce axial forces and moments along the bimorph’s neutral plane, varying with thermal expansion. The structural model derives the governing equation of deformation for the bimorph by analyzing internal strains and stresses resulting from deformation, electrothermal heating, and residual stresses. An analytical solution for deflection is obtained, incorporating infinite sums of heating and buckling modes, with closed-form equivalent expressions when possible. The bimorph’s behavior under different scenarios of residual stresses and electrothermal heating is elucidated based on the analytical model. Comparisons with finite element simulations demonstrated excellent agreement, highlighting the high accuracy of the proposed models.more » « less
-
The implementation of two‐photon polymerization (TPP) in the microrobotics community has permitted the fabrication of complex 3D structures at the microscale, creating novel platforms with potential biomedical applications for minimizing procedure invasiveness and diagnosis accuracy. Although advanced functionalities for manipulation and drug delivery tasks have been explored, one remaining challenge is achieving improved visualization, identification, and accurate closed‐loop control of microscale robots. To enable this, distinguishable identifying and trackable features must be included on the microrobot. Toward this end, the construction of micro‐ and nanoscale patterns using TPP is demonstrated for the first time on microrobot surfaces with the intent of mimicking color‐expressing nanostructures present on beetles or butterflies. The patterns provide identification and tracking targets due to their vivid color expression under visible light. Helical and rectangular microrobots are designed with the topical patterns and further functionalized with magnetic materials to be externally actuated by magnetic fields. Vision‐based tracking of a 20 μm × 30 μm colored feature on a 100 μm‐long helical microrobot using a fixed angular position light source during microrobotic motion is shown. This versatile structural color patterning approach shows great potential for the visual differentiation of various microrobots and tracking for improved closed‐loop control.more » « less
An official website of the United States government
