Microscale heating platforms capable of generating localized temperature rises can find applications in wide‐ranging areas including nanomaterials synthesis and microscale thermometry. Here, commercially available optical calibration samples called Ronchi rulings, which consist of an array of chrome lines on a float glass substrate, are demonstrated to serve as reconfigurable Joule heaters. Electrical connections are formed by wire bonding onto the chrome to Joule heat individual lines and monitor their temperature rises using electrical resistance thermometry. Tests across multiple heater lines demonstrate a negative temperature coefficient of resistance with an average value of −6.93 × 10−4 ± 8.18 × 10−5 K−1. Under Joule heating, temperature rises exceeding 100 K are measured. To characterize the temperature gradient across the chrome line and glass, a noncontact optical thermometry technique based on the temperature‐dependent luminescence of upconverting nanoparticles (UCNPs) is used, producing temperature measurements that match finite element simulations. A 1:1 area ratio between the chrome lines and glass offers a high probability of finding UCNPs across both materials. The temperature rise on chrome determined from luminescence thermometry, electrical resistance thermometry, and simulations are also consistent. Furthermore, over 50% of the peak temperature rise is maintained along the neighboring glass region.
more »
« less
Automated plasmon peak fitting derived temperature mapping in a scanning transmission electron microscope
Nanoscale thermometry, an approach based on non-invasive, yet precise measurements of temperature with nanometer spatial resolution, has emerged as a very active field of research over the last few years. In transmission electron microscopy, nanoscale thermometry is particularly important during in situ experiments or to assess the effects of beam induced heating. In this article, we present a nanoscale thermometry approach based on electron energy-loss spectroscopy in a transmission electron microscope to measure locally the temperature of silicon nanoparticles using the energy shift of the plasmon resonance peak with respect to the zero-loss peak as a function of temperature. We demonstrate that using non-negative matrix factorization and curve fitting of stacked spectra, the temperature accuracy can be improved significantly over previously reported manual fitting approaches. We will discuss the necessary acquisition parameters to achieve a precision of 6 meV to determine the plasmon peak position.
more »
« less
- Award ID(s):
- 1831406
- PAR ID:
- 10597543
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- AIP Advances
- Volume:
- 11
- Issue:
- 3
- ISSN:
- 2158-3226
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report a pulsed laser annealing method to convert carbon fibers and nanotubes into diamond fibers at ambient temperature and pressure in air. The conversion of carbon nanofibers and nanotubes into diamond nanofibers involves melting in a super undercooled state using nanosecond laser pulses, and quenching rapidly to convert into phase-pure diamond. The conversion process occurs at ambient temperature and pressure, and can be carried out in air. The structure of diamond fibers has been confirmed by selected-area electron diffraction in transmission electron microscopy, electron-back-scatter-diffraction in high-resolution scanning electron microscopy, all showing characteristic diffraction lines for the diamond structure. The bonding characteristics were determined by Raman spectroscopy with a strong peak near 1332 cm −1 , and high-resolution electron-energy-loss spectroscopy in transmission electron microscopy with a characteristic peak at 292 eV for σ* for sp 3 bonding and the absence of π* for sp 2 bonding. The Raman peak at 1332 cm −1 downshifts to 1321 cm −1 for diamond nanofibers due to the phonon confinement in nanodiamonds. These laser-treated carbon fibers with diamond seeds are used to grow larger diamond crystallites further by using standard hot-filament chemical vapor deposition (HFCVD). We compare these results with those obtained without laser treating the carbon fibers. The details of diamond conversion and HFCVD growth are presented in this paper.more » « less
-
We leverage the high spatial and energy resolution of monochromated aberration-corrected scanning transmission electron microscopy to study the hybridization of cyclic assemblies of plasmonic gold nanorods. Detailed experiments and simulations elucidate the hybridization of the coupled long-axis dipole modes into collective magnetic and electric dipole plasmon resonances. We resolve the magnetic dipole mode in these closed loop oligomers with electron energy loss spectroscopy and confirm the mode assignment with its characteristic spectrum image. The energy splitting of the magnetic mode and antibonding modes increases with the number of polygon edges (n). For the n=3-6 oligomers studied, optical simulations using normal incidence and s-polarized oblique incidence show the respective electric and magnetic modes’ extinction efficiencies are maximized in the n=4 arrangement.more » « less
-
The lithium-ion battery is currently the preferred power source for applications ranging from smart phones to electric vehicles. Imaging the chemical reactions governing its function as they happen, with nanoscale spatial resolution and chemical specificity, is a long-standing open problem. Here, we demonstrate operando spectrum imaging of a Li-ion battery anode over multiple charge-discharge cycles using electron energy-loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM). Using ultrathin Li-ion cells, we acquire reference EELS spectra for the various constituents of the solid-electrolyte interphase (SEI) layer and then apply these “chemical fingerprints” to high-resolution, real-space mapping of the corresponding physical structures. We observe the growth of Li and LiH dendrites in the SEI and fingerprint the SEI itself. High spatial- and spectral-resolution operando imaging of the air-sensitive liquid chemistries of the Li-ion cell opens a direct route to understanding the complex, dynamic mechanisms that affect battery safety, capacity, and lifetime.more » « less
-
A model for plasma confinement is developed and applied for describing an electrically confined thermonuclear plasma. The plasma confinement model includes both an analytical approach that excludes space charge effects and a classical trajectory Monte Carlo simulation that accounts for space charge. The plasma consists of reactant ions that form a non-neutral plasma without electrons. The plasma drifts around a negatively charged electrode. Conditions are predicted for confining a deuterium–tritium plasma using a 460 kV applied electric potential difference. The ion plasma would have a 20 keV temperature, a 1020 m−3 peak density, and a 110 keV average kinetic energy per ion (including drift and thermal portions at a certain point in the plasma). The fusion energy production rate is predicted to be 10 times larger than the energy loss rate, including contributions associated with both plasma loss to electrodes and secondary electron emission. However, an approach for enhancing the fusion power density may have to be employed to realize a practical use for centrifugal-electrostatic confinement fusion.more » « less
An official website of the United States government
