skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2026

Title: The enumeration of alternating oriented pretzel links
In this paper, we tabulate the set of alternating oriented pretzel links. We derive a closed formula for the precise number of alternating oriented pretzel links with any given crossing number [Formula: see text]. Numerical computation suggests that this number grows approximately at the rate of [Formula: see text]  more » « less
Award ID(s):
2150179
PAR ID:
10597588
Author(s) / Creator(s):
; ;
Publisher / Repository:
World Scientific
Date Published:
Journal Name:
Journal of Knot Theory and Its Ramifications
Volume:
34
Issue:
08
ISSN:
0218-2165
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. It was previously shown by the first author that every knot in [Formula: see text] is ambient isotopic to one component of a two-component, alternating, hyperbolic link. In this paper, we define the alternating volume of a knot [Formula: see text] to be the minimum volume of any link [Formula: see text] in a natural class of alternating, hyperbolic links such that [Formula: see text] is ambient isotopic to a component of [Formula: see text]. Our main result shows that the alternating volume of a knot is coarsely equivalent to the twist number of a knot. 
    more » « less
  2. The non-orientable 4-genus of a knot [Formula: see text] in [Formula: see text] is defined to be the minimum first Betti number of a non-orientable surface [Formula: see text] smoothly embedded in [Formula: see text] so that [Formula: see text] bounds [Formula: see text]. We will survey the tools used to compute the non-orientable 4-genus, and use various techniques to calculate this invariant for non-alternating 11 crossing knots. We will also view obstructions to a knot bounding a Möbius band given by the double branched cover of [Formula: see text] branched over [Formula: see text]. 
    more » « less
  3. Let [Formula: see text] be a prime power and [Formula: see text]. In this paper we complete the classification of good polynomials of degree [Formula: see text] that achieve the best possible asymptotics (with an explicit error term) for the number of totally split places. Moreover, for degrees up to [Formula: see text], we provide an explicit lower bound and an asymptotic estimate for the number of totally split places of [Formula: see text]. Finally, we prove the general fact that the number [Formula: see text] of [Formula: see text] for which [Formula: see text] splits obeys a linear recurring sequence. For any [Formula: see text], this allows for the computation of [Formula: see text] for large [Formula: see text] by only computing a recurrence sequence over [Formula: see text]. 
    more » « less
  4. Meier and Zupan proved that an orientable surface [Formula: see text] in [Formula: see text] admits a tri-plane diagram with zero crossings if and only if [Formula: see text] is unknotted, so that the crossing number of [Formula: see text] is zero. We determine the minimal crossing numbers of nonorientable unknotted surfaces in [Formula: see text], proving that [Formula: see text], where [Formula: see text] denotes the connected sum of [Formula: see text] unknotted projective planes with normal Euler number [Formula: see text] and [Formula: see text] unknotted projective planes with normal Euler number [Formula: see text]. In addition, we convert Yoshikawa’s table of knotted surface ch-diagrams to tri-plane diagrams, finding the minimal bridge number for each surface in the table and providing upper bounds for the crossing numbers. 
    more » « less
  5. Starting with a vertex-weighted pointed graph [Formula: see text], we form the free loop algebra [Formula: see text] defined in Hartglass–Penneys’ article on canonical [Formula: see text]-algebras associated to a planar algebra. Under mild conditions, [Formula: see text] is a non-nuclear simple [Formula: see text]-algebra with unique tracial state. There is a canonical polynomial subalgebra [Formula: see text] together with a Dirac number operator [Formula: see text] such that [Formula: see text] is a spectral triple. We prove the Haagerup-type bound of Ozawa–Rieffel to verify [Formula: see text] yields a compact quantum metric space in the sense of Rieffel. We give a weighted analog of Benjamini–Schramm convergence for vertex-weighted pointed graphs. As our [Formula: see text]-algebras are non-nuclear, we adjust the Lip-norm coming from [Formula: see text] to utilize the finite dimensional filtration of [Formula: see text]. We then prove that convergence of vertex-weighted pointed graphs leads to quantum Gromov–Hausdorff convergence of the associated adjusted compact quantum metric spaces. As an application, we apply our construction to the Guionnet–Jones–Shyakhtenko (GJS) [Formula: see text]-algebra associated to a planar algebra. We conclude that the compact quantum metric spaces coming from the GJS [Formula: see text]-algebras of many infinite families of planar algebras converge in quantum Gromov–Hausdorff distance. 
    more » « less