Abstract Protein language models (pLMs) have been widely adopted for various protein and peptide-related downstream tasks and demonstrated promising performance. However, short peptides are significantly underrepresented in commonly used pLM training datasets. For example, only 2.8% of sequences in the UniProt Reference Cluster (UniRef) contain fewer than 50 residues, which potentially limits the effectiveness of pLMs for peptide-specific applications. Here, we present PepBERT, a lightweight and efficient peptide language model specifically designed for encoding peptide sequences. Two versions of the model—PepBERT-large (4.9 million parameters) and PepBERT-small (1.86 million parameters)—were pretrained from scratch using four custom peptide datasets and evaluated on nine peptide-related downstream prediction tasks. Both PepBERT models achieved performance superior to or comparable to the benchmark model, ESM-2 with 7.5 million parameters, on 8 out of 9 datasets. Overall, PepBERT provides a compact yet effective solution for generating high-quality peptide representations for downstream applications. By enabling more accurate representation and prediction of bioactive peptides, PepBERT can accelerate the discovery of food-derived bioactive peptides with health-promoting properties, supporting the development of sustainable functional foods and value-added utilization of food processing by-products. The datasets, source codes, pretrained models, and tutorials for the usage of PepBERT are available athttps://github.com/dzjxzyd/PepBERT.
more »
« less
Foundation models in robotics: Applications, challenges, and the future
We survey applications of pretrained foundation models in robotics. Traditional deep learning models in robotics are trained on small datasets tailored for specific tasks, which limits their adaptability across diverse applications. In contrast, foundation models pretrained on internet-scale data appear to have superior generalization capabilities, and in some instances display an emergent ability to find zero-shot solutions to problems that are not present in the training data. Foundation models may hold the potential to enhance various components of the robot autonomy stack, from perception to decision-making and control. For example, large language models can generate code or provide common sense reasoning, while vision-language models enable open-vocabulary visual recognition. However, significant open research challenges remain, particularly around the scarcity of robot-relevant training data, safety guarantees and uncertainty quantification, and real-time execution. In this survey, we study recent papers that have used or built foundation models to solve robotics problems. We explore how foundation models contribute to improving robot capabilities in the domains of perception, decision-making, and control. We discuss the challenges hindering the adoption of foundation models in robot autonomy and provide opportunities and potential pathways for future advancements. The GitHub project corresponding to this paper can be found here:https://github.com/robotics-survey/Awesome-Robotics-Foundation-Models.
more »
« less
- Award ID(s):
- 2044149
- PAR ID:
- 10597603
- Publisher / Repository:
- SAGE Journals
- Date Published:
- Journal Name:
- The International Journal of Robotics Research
- Volume:
- 44
- Issue:
- 5
- ISSN:
- 0278-3649
- Page Range / eLocation ID:
- 701 to 739
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Autonomous robots are increasingly deployed for long-term information-gathering tasks, which pose two key challenges: planning informative trajectories in environments that evolve across space and time, and ensuring persistent operation under energy constraints. This paper presents a unified framework, , that addresses both challenges through adaptive ergodic search and energy-aware scheduling in multi-robot systems. Our contributions are two-fold: (1) we model real-world variability using stochastic spatiotemporal environments, where the underlying information evolves continuously over space and time under process noise. To guide exploration, we construct a target information spatial distribution (TISD) based on clarity, a metric that captures the decay of information in the absence of observations and highlights regions of high uncertainty; and (2) we introduce ( ), an online scheduling method that enables persistent operation by coordinating rechargeable robots sharing a single mobile charging station. Unlike prior work, our approach avoids reliance on preplanned schedules, static or dedicated charging stations, and simplified robot dynamics. Instead, the scheduler supports general nonlinear models, accounts for uncertainty in the estimated position of the charging station, and handles central node failures. The proposed framework is validated through real-world hardware experiments, and feasibility guarantees are provided under specific assumptions.[Code: https://github.com/kalebbennaveed/mEclares-main.git][Experiment Video: https://www.youtube.com/watch?v=dmaZDvxJgF8]more » « less
-
Rapid advancement in machine learning is increasing the demand for effective graph data analysis. However, real-world graph data often exhibits class imbalance, leading to poor performance of standard machine learning models on underrepresented classes. To address this,Class-ImbalancedLearning onGraphs (CILG) has emerged as a promising solution that combines graph representation learning and class-imbalanced learning. This survey provides a comprehensive understanding of CILG’s current state-of-the-art, establishing the first systematic taxonomy of existing work and its connections to traditional imbalanced learning. We critically analyze recent advances and discuss key open problems. A continuously updated reading list of relevant articles and code implementations is available athttps://github.com/yihongma/CILG-Papers.more » « less
-
Abstract Protein language models, like the popular ESM2, are widely used tools for extracting evolution-based protein representations and have achieved significant success on downstream biological tasks. Representations based on sequence and structure models, however, show significant performance differences depending on the downstream task. A major open problem is to obtain representations that best capture both the evolutionary and structural properties of proteins in general. Here we introduceImplicitStructureModel(ISM), a sequence-only input model with structurally-enriched representations that outperforms state-of-the-art sequence models on several well-studied benchmarks including mutation stability assessment and structure prediction. Our key innovations are a microenvironment-based autoencoder for generating structure tokens and a self-supervised training objective that distills these tokens into ESM2’s pre-trained model. We have madeISM’s structure-enriched weights easily available: integrating ISM into any application using ESM2 requires changing only a single line of code. Our code is available athttps://github.com/jozhang97/ISM.more » « less
-
Guillot, Gilles (Ed.)Diagnostic and prognostic models are increasingly important in medicine and inform many clinical decisions. Recently, machine learning approaches have shown improvement over conventional modeling techniques by better capturing complex interactions between patient covariates in a data-driven manner. However, the use of machine learning introduces technical and practical challenges that have thus far restricted widespread adoption of such techniques in clinical settings. To address these challenges and empower healthcare professionals, we present an open-source machine learning framework, AutoPrognosis 2.0, to facilitate the development of diagnostic and prognostic models. AutoPrognosis leverages state-of-the-art advances in automated machine learning to develop optimized machine learning pipelines, incorporates model explainability tools, and enables deployment of clinical demonstrators,withoutrequiring significant technical expertise. To demonstrate AutoPrognosis 2.0, we provide an illustrative application where we construct a prognostic risk score for diabetes using the UK Biobank, a prospective study of 502,467 individuals. The models produced by our automated framework achieve greater discrimination for diabetes than expert clinical risk scores. We have implemented our risk score as a web-based decision support tool, which can be publicly accessed by patients and clinicians. By open-sourcing our framework as a tool for the community, we aim to provide clinicians and other medical practitioners with an accessible resource to develop new risk scores, personalized diagnostics, and prognostics using machine learning techniques. Software:https://github.com/vanderschaarlab/AutoPrognosismore » « less
An official website of the United States government

