skip to main content

Title: Deep-Ultraviolet Thermoreflectance Thermal Imaging of GaN High Electron Mobility Transistors
Featuring broadband operation and high efficiency, gallium nitride (GaN)-based radio frequency (RF) power amplifiers are key components to realize the next generation mobile network. However, to fully implement GaN high electron mobility transistors (HEMT) for such applications, it is necessary to overcome thermal reliability concerns stemming from localized extreme temperature gradients that form under high voltage and power operation. In this work, we developed a deep-ultraviolet thermoreflectance thermal imaging capability, which can potentially offer the highest spatial resolution among diffraction-limited far-field optical thermography techniques. Experiments were performed to compare device channel temperatures obtained from near-ultraviolet and deep-ultraviolet wavelength illumination sources for the proof of concept of the new characterization method. Deep-ultraviolet thermoreflectance imaging will facilitate the study of device self-heating within transistors based on GaN and emerging ultra-wide bandgap semiconductors (e.g., β-Ga2O3, AlxGa1-xN, and diamond) subjected to simultaneous extreme electric field and heat flux conditions.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm)
Page Range / eLocation ID:
1 to 5
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Researchers have been extensively studying wide-bandgap (WBG) semiconductor materials such as gallium nitride (GaN) with an aim to accomplish an improvement in size, weight, and power of power electronics beyond current devices based on silicon (Si). However, the increased operating power densities and reduced areal footprints of WBG device technologies result in significant levels of self-heating that can ultimately restrict device operation through performance degradation, reliability issues, and failure. Typically, self-heating in WBG devices is studied using a single measurement technique while operating the device under steady-state direct current measurement conditions. However, for switching applications, this steady-state thermal characterization may lose significance since the high power dissipation occurs during fast transient switching events. Therefore, it can be useful to probe the WBG devices under transient measurement conditions in order to better understand the thermal dynamics of these systems in practical applications. In this work, the transient thermal dynamics of an AlGaN/GaN high electron mobility transistor (HEMT) were studied using thermoreflectance thermal imaging and Raman thermometry. Also, the proper use of iterative pulsed measurement schemes such as thermoreflectance thermal imaging to determine the steady-state operating temperature of devices is discussed. These studies are followed with subsequent transient thermal characterization to accurately probe the self-heating from steady-state down to submicrosecond pulse conditions using both thermoreflectance thermal imaging and Raman thermometry with temporal resolutions down to 15 ns. 
    more » « less
  2. null (Ed.)
    Abstract Gallium nitride (GaN) has emerged as one of the most attractive base materials for next-generation high-power and high-frequency electronic devices. Recent efforts have focused on realizing vertical power device structures such as in situ oxide, GaN interlayer based vertical trench metal–oxide–semiconductor field-effect transistors (OG-FETs). Unfortunately, the higher-power density of GaN electronics inevitably leads to considerable device self-heating which impacts device performance and reliability. Halide vapor-phase epitaxy (HVPE) is currently the most common approach for manufacturing commercial GaN substrates used to build vertical GaN transistors. Vertical device structures consist of GaN layers of diverse doping levels. Hence, it is of crucial importance to measure and understand how the dopant type (Si, Fe, and Mg), doping level, and crystal quality alter the thermal conductivity of HVPE-grown bulk GaN. In this work, a steady-state thermoreflectance (SSTR) technique was used to measure the thermal conductivity of HVPE-grown GaN substrates employing different doping schemes and levels. Structural and electrical characterization methods including X-ray diffraction (XRD), secondary-ion mass spectrometry (SIMS), Raman spectroscopy, and Hall-effect measurements were used to determine and compare the GaN crystal quality, dislocation density, doping level, and carrier concentration. Using this comprehensive suite of characterization methods, the interrelation among structural/electrical parameters and the thermal conductivity of bulk GaN substrates was investigated. While doping is evidenced to reduce the GaN thermal conductivity, the highest thermal conductivity (201 W/mK) is observed in a heavily Si-doped (1–5.00 × 1018 cm−3) substrate with the highest crystalline quality. This suggests that phonon-dislocation scattering dominates over phonon-impurity scattering in the tested HVPE-grown bulk GaN substrates. The results provide useful information for designing thermal management solutions for vertical GaN power electronic devices. 
    more » « less
  3. Gallium nitride (GaN) high electron mobility transistors (HEMTs) are key components of modern radio frequency (RF) power amplifiers. However, device self-heating negatively impacts both the performance and reliability of GaN HEMTs. Accordingly, laser-based pump-probe methods have been used to characterize the thermal resistance network of epitaxial material stacks that are used to fabricate HEMT structures. However, validation studies of these measurement results at the device level are lacking. In the present work, a GaN-on-SiC wafer was characterized using frequency-domain thermoreflectance and steady-state thermoreflectance techniques. The thermal conductivity of the GaN channel/buffer layer, SiC substrate, and the interfacial thermal boundary resistance at the GaN/SiC interface were determined. Results were validated by performing thermal imaging and modeling of a transmission line measurement (TLM) structure fabricated on the GaN-on-SiC wafer. 
    more » « less
  4. The demand for high power and high-frequency radio frequency (RF) power amplifiers makes AlGaN/GaN high electron mobility transistors (HEMTs) an attractive option due to their large critical field, high saturation velocity, and reduced device footprint as compared to Si-based counterparts. However, due to the high operating power densities, intense device self-heating occurs, which degrades the electrical performance and compromises the device’s reliability. The self-heating behavior of AlGaN/GaN HEMTs is known to be not solely a function of the dissipated power but is highly bias-dependent. As the operation of RF power amplifiers involves alteration of the device operation from fully-open to pinched-off channel conditions, it is critical to experimentally map the full channel temperature profile as a function of bias conditions. However, such measurement is difficult using optical thermography techniques due to the lack of optical access underneath the gate electrode, where the peak temperature is expected to occur.

    To address this challenge, an AlGaN/GaN HEMT employing a transparent gate made of indium tin oxide (ITO) was fabricated, which enables full channel temperature mapping using Raman spectroscopy. It was found that the maximum channel temperature rise under a partially pinched-off condition is more than ∼93% higher than that for an open channel condition, although both conditions would lead to an identical power dissipation level. The channel peak temperature probed in an ITO-gated device (underneath the gate) is ∼33% higher than the highest channel temperature that can be measured for a standard metal-gated AlGaN/GaN HEMT (i.e., next to the metal gate structure) operating under an identical bias condition. This indicates that one may significantly underestimate the device’s thermal resistance when solely relying on performing thermal characterization on the optically accessible region of a standard AlGaN/GaN HEMT. The outcomes of this study are important in terms of conducting a more accurate lifetime prediction of the device lifetime and designing thermal management solutions.

    more » « less
  5. β-phase gallium oxide ( β-Ga2O3) has drawn significant attention due to its large critical electric field strength and the availability of low-cost high-quality melt-grown substrates. Both aspects are advantages over gallium nitride (GaN) and silicon carbide (SiC) based power switching devices. However, because of the poor thermal conductivity of β-Ga2O3, device-level thermal management is critical to avoid performance degradation and component failure due to overheating. In addition, for high-frequency operation, the low thermal diffusivity of β-Ga2O3 results in a long thermal time constant, which hinders the use of previously developed thermal solutions for devices based on relatively high thermal conductivity materials (e.g., GaN transistors). This work investigates a double-side diamond-cooled β-Ga2O3 device architecture and provides guidelines to maximize the device’s thermal performance under both direct current (dc) and high-frequency switching operation. Under high-frequency operation, the use of a β-Ga2O3 composite substrate (bottom-side cooling) must be augmented by a diamond passivation overlayer (top-side cooling) because of the low thermal diffusivity of β-Ga2O3. 
    more » « less