Abstract Let K/\mathbf{Q}_{p}be unramified.Inside the Emerton–Gee stack \mathcal{X}_{2}, one can consider the locus of two-dimensional mod 𝑝 representations of \mathrm{Gal}(\overline{K}/K)having a crystalline lift with specified Hodge–Tate weights.We study the case where the Hodge–Tate weights are irregular, which is an analogue for Galois representations of the partial weight one condition for Hilbert modular forms.We prove that if the gap between each pair of weights is bounded by 𝑝 (the irregular analogue of a Serre weight), then this locus is irreducible.We also establish various inclusion relations between these loci.
more »
« less
Extremal weights and a tameness criterion for mod $p$ Galois representations
We study the weight part of Serre’s conjecture for genericn-dimensional modpGalois representations. We first generalize Herzig’s conjecture to the case where the field is ramified atpand prove the weight elimination direction of the conjecture. We then introduce a new class of weights associated ton-dimensional local modprepresentations which we callextremal weights. Using a “Levi reduction” property of certain potentially crystalline Galois deformation spaces, we prove the modularity of these weights. As a consequence, we deduce the weight part of Serre’s conjecture for unit groups of some division algebras in generic situations.
more »
« less
- PAR ID:
- 10597879
- Publisher / Repository:
- EMS Press
- Date Published:
- Journal Name:
- Journal of the European Mathematical Society
- ISSN:
- 1435-9855
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We prove in generic situations that the lattice in a tame type induced by the completed cohomology of a $U(3)$ -arithmetic manifold is purely local, that is, only depends on the Galois representation at places above $$p$$ . This is a generalization to $$\text{GL}_{3}$$ of the lattice conjecture of Breuil. In the process, we also prove the geometric Breuil–Mézard conjecture for (tamely) potentially crystalline deformation rings with Hodge–Tate weights $(2,1,0)$ as well as the Serre weight conjectures of Herzig [‘The weight in a Serre-type conjecture for tame $$n$$ -dimensional Galois representations’, Duke Math. J. 149 (1) (2009), 37–116] over an unramified field extending the results of Le et al. [‘Potentially crystalline deformation 3985 rings and Serre weight conjectures: shapes and shadows’, Invent. Math. 212 (1) (2018), 1–107]. We also prove results in modular representation theory about lattices in Deligne–Lusztig representations for the group $$\text{GL}_{3}(\mathbb{F}_{q})$$ .more » « less
-
Abstract We establish a first general partial regularity theorem for area minimizing currents$${\mathrm{mod}}(p)$$ , for everyp, in any dimension and codimension. More precisely, we prove that the Hausdorff dimension of the interior singular set of anm-dimensional area minimizing current$${\mathrm{mod}}(p)$$ cannot be larger than$$m-1$$ . Additionally, we show that, whenpis odd, the interior singular set is$$(m-1)$$ -rectifiable with locally finite$$(m-1)$$ -dimensional measure.more » « less
-
Abstract We prove that the Tate conjecture for divisors is “generically true” for \operatorname{mod}preductions of complex projective varieties with h^{2,0}=1, under a mild assumption on moduli.By refining this general result, we establish a new case of the BSD conjecture over global function fields, and the Tate conjecture for a class of general type surfaces of geometric genus 1.more » « less
-
Abstract We construct projective toric surfaces whose blow-up at a general point has a non-polyhedral pseudo-effective cone.As a consequence, we prove that the pseudo-effective cone of the Grothendieck–Knudsen moduli space \overline{M}_{0,n}of stable rational curves is not polyhedral for n\geq 10.These results hold both in characteristic 0 and in characteristic 𝑝, for all primes 𝑝.Many of these toric surfaces are related to an interesting class of arithmetic threefolds that we call arithmetic elliptic pairs of infinite order.Our analysis relies on tools of arithmetic geometry and Galois representations in the spirit of the Lang–Trotter conjecture, producing toric surfaces whose blow-up at a general point has a non-polyhedral pseudo-effective cone in characteristic 0 and in characteristic 𝑝, for an infinite set of primes 𝑝 of positive density.more » « less
An official website of the United States government

