In dense RFID systems, efficient coordination of multiple readers is crucial to prevent reader-to-reader interference (RRI) and ensure optimal system performance. As the number of readers and tags increases, static frequency and time-slot assignment become insufficient to handle dynamic network conditions, leading to collisions, missed tag reads, and degraded throughput. In this paper, we propose a decentralized neigh-borhood discovery and management scheme for RFID systems operating in high-density environments. Our approach minimizes interference and improves tag read accuracy by dynamically adjusting communication parameters like frequency and time slots based on current system conditions, which are updated by periodic information exchanges among readers. Experimental results demonstrate that the proposed method significantly improves system scalability, throughput, and reliability. The proposed framework offers a scalable and adaptive solution for dense reader environments.
more »
« less
This content will become publicly available on April 22, 2026
MCSMARA: A MAC Protocol for RFID Systems
Dense RFID environments pose critical challenges such as Reader-to-Reader Interference (RRI), Reader-to-Tag Collisions (RTC), and inefficient resource utilization, which degrade system performance and scalability. Traditional Media Access Control (MAC) protocols, including CSMA and TDMA, struggle to address these issues effectively, particularly in dynamic and large-scale deployments. This paper introduces MCSMARA (Markov Decision Process (MDP)-based Carrier Sense Multiple Access with Reader Arbitration), a novel MAC protocol designed to optimize reader coordination in dense RFID networks. By leveraging an MDP framework, MCSMARA models reader state transitions and employs a utility-based arbitration mechanism to dynamically allocate frequencies and time slots. The protocol incorporates adaptive backoff and decentralized neighborhood discovery for efficient resource management without centralized control. Simulation results demonstrate that MCSMARA reduces collisions by up to 30%, improves throughput by 25%, and ensures superior scalability, supporting a large amount of readers with minimal computational overhead. These findings establish MCSMARA as a transformative solution for RFID networks in logistics, retail, and industrial IoT, with potential for extension to mobile and heterogeneous environments.
more »
« less
- PAR ID:
- 10597995
- Publisher / Repository:
- IEEE
- Date Published:
- ISSN:
- 2573-7635
- ISBN:
- 979-8-3315-0905-7
- Page Range / eLocation ID:
- 1 to 6
- Subject(s) / Keyword(s):
- RFID, MAC Protocol, Markov Decision Process (MDP), Collision Avoidance, Adaptive Backoff, Scalability.
- Format(s):
- Medium: X
- Location:
- Atlanta, GA, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In dense RFID systems, power control provides an effective means for maintaining communication efficiency and preventing reader-to-reader and reader-to-tag interference. Traditional RFID systems often operate at fixed power levels, which can lead to communication bottlenecks and inefficient tag reads in dynamic environments. This paper proposes an adaptive power control technique to improve the system performance by dynamically adjusting the transmit power based on environmental conditions, tag distance, and network congestion. Simulations and experimental results demonstrate that the proposed approach improves tag read rates, reduces interference, and enhances system robustness in dense environments.more » « less
-
Currently, there is an increasing interest in the use of RFID systems with passive or battery-less tags with sensors incorporated, also known as computational RFID (CRFID) systems. These passive tags use the reader signal to power up their microcontroller and an attached sensor. Following the current standard EPC C1G2, the reader must identify the tag (receive the tag's identification code) prior to receive data from its sensor. In a typical RFID scenario, several sensor tags share the reader interrogation zone, and during their identification process, their responses often collide, increasing their identification time. Therefore, RFID application developers must be mindful of tag anti-collision protocols when dealing with CRFID tags in dense RFID sensor networks. So far, significant effort has been invested in simulation-based analysis of the performance of anti-collision protocols regarding the tags identification time. However, no one has explored the experimental performance of anti-collision protocols in an RFID sensor network using CRFID. This paper: (i) demonstrates that the impact of one tag identification time over the total time required to read one sensor data from that same tag is very significant, and (ii) presents an UHF-SDR RFID system which validates the improvement of FuzzyQ, a fast anticollision protocol, in relation to the protocol used in the current RFID standard.more » « less
-
Passive RFID technology is widely used in user authentication and access control. We propose RF-Rhythm, a secure and usable two-factor RFID authentication system with strong resilience to lost/stolen/cloned RFID cards. In RF-Rhythm, each legitimate user performs a sequence of taps on his/her RFID card according to a self-chosen secret melody. Such rhythmic taps can induce phase changes in the backscattered signals, which the RFID reader can detect to recover the user’s tapping rhythm. In addition to verifying the RFID card’s identification information as usual, the backend server compares the extracted tapping rhythm with what it acquires in the user enrollment phase. The user passes authentication checks if and only if both verifications succeed. We also propose a novel phase-hopping protocol in which the RFID reader emits Continuous Wave (CW) with random phases for extracting the user’s secret tapping rhythm. Our protocol can prevent a capable adversary from extracting and then replaying a legitimate tapping rhythm from sniffed RFID signals. Comprehensive user experiments confirm the high security and usability of RF-Rhythm with false-positive and false-negative rates close to zero.more » « less
-
UHF RFID tags have been widely used for contactless inventory and tracking applications. One fundamental problem with RFID readers is their limited tag reading rate. Existing RFID readers (e.g., Impinj Speedway) can read about 35 tags per second in a read zone, which is far from enough for many applications. In this paper, we present the first-of-its-kind RFID reader (mReader), which borrows the idea of multi-user MIMO (MU-MIMO) from cellular networks to enable concurrent multi-tag reading in passive RFID systems. mReader is equipped with multiple antennas for implicit beamforming in downlink transmissions. It is enabled by three key techniques: uplink collision recovery, transition-based channel estimation, and zero-overhead channel calibration. In addition, mReader employs a Q-value adaptation algorithm for medium access control to maximize its tag reading rate. We have built a prototype of mReader on USRP X310 and demonstrated for the first time that a two-antenna reader can read two commercial off-the-shelf (COTS) tags simultaneously. Numerical results further show that mReader can improve the tag reading rate by 45% compared to existing RFID readers.more » « less
An official website of the United States government
