skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 22, 2026

Title: Student Interest in STEM Careers: An NSF ITEST Project for High Schoolers’ Renewable Energy Technology Engagement
This NSF ITEST project (Award # 2148429) at Illinois State University focuses on engaging students in four Chicago Public High Schools in an afterschool STEM program, SUPERCHARGE, where they experience hands on activities with renewable energy technologies and related sustainability-tied experiences. Between 10 and 20 students met weekly afterschool during the first year of implementation which was preceded by a planning year in which teachers provided feedback on activities and connections to the communities of the schools were developed. Four faculty were involved in the design of the project and activities and an additional group of undergraduate STEM majors were also involved in the design and pilot of all activities. Four goals frame this project and research. These are to learn how (1) high school students’ knowledge of STEM careers and STEM domains change across their participation; (2) the high school students improve their interest in STEM career attainment and their self-efficacy for career relevant skills; (3) the undergraduate STEM majors’ views about Communities of Learners of Underrepresented Discoverers develop across their participation; and (4) teachers’ knowledge of current STEM domains, skills, and careers change. To examine the impact of the programming on each stakeholder group, PEAR’s CIS-S and CIS-E surveys, interviews, activity surveys, and workshop surveys were used. Currently, the data from the first year of programming includes 21 pre-post student surveys and 10 surveys from the undergraduate designers and 9 surveys from the teachers in the program. At this time, statistical tests were not appropriate due to these small numbers, but future years will bolster these numbers, and we anticipate the ability to perform statistical tests as the data set grows. Therefore, we focus on a qualitative analysis of the surveys and interviews at this stage.  more » « less
Award ID(s):
2148429
PAR ID:
10598182
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Society for Engineering Education (ASEE)
Date Published:
Format(s):
Medium: X
Location:
Montreal, QC, Canada
Sponsoring Org:
National Science Foundation
More Like this
  1. This qualitative study chronicles one of the fundamental pillars of the Curriculum and Community Enterprise for Restoration Science (CCERS). The professional development is focused on curricula that are grounded in the community-based environmental restoration of the waterways of New York Harbor. Centered on the restoration of the native oyster population, hundreds of New York City public school teachers take part in this experience with the intent of increasing their own place-based pedagogical content knowledge and skills. Most of the participants teach in school with populations that are underrepresented in post-secondary STEM majors and STEM related careers. Professional learning activities for teachers and community scientists were offered throughout the 2021 calendar year. Professional Learning Activity Surveys were administered and teachers responded to questions about how they participated in CCERS events, the ways in which CCERS participation has impacted their teaching practice, whether they use CCERS activities for student research, and ways CCERS participation impacts student STEM career interest. An intended outcome is to instill a STEM identity in students identifying as URM and to bring STEM career awareness to these students. More than 72% of the teachers in the professional development sessions agreed that the professional learning activities were effective in providing new STEM content knowledge and best practices for teaching. The majority also reported that the sessions enabled them to increase their students’ engagement with STEM and interest in STEM careers. 
    more » « less
  2. Performance in math, particularly algebra, is a major barrier to student success and participation in STEM among under-represented minoritized students, particularly Black U.S. high school students. This research applies social cognitive career theory (SCCT) to measure the impacts of an afterschool algebra for engineering program on math self-efficacy and interest in STEM among high school students in a large urban district. To study the program’s effects, a mixed methods research design was used where schools were assigned to either treatment or control conditions. Students in treatment schools accessed algebra for engineering modules, STEM professional role model videos, and field trips, while students in control schools accessed role model videos and field trips only. Surveys measuring math self-efficacy and STEM interest, outcome expectations, and choice goals were completed by participants in both conditions at the beginning and end of two separate program years, 2021–2022 and 2022–2023. Across both years, quantitative results suggest some positive effects of participation, particularly for STEM choice goals, but benefits depend upon student participation levels. Qualitative data offer student voice around prior experiences in math and science and the development of postsecondary plans in STEM. In combination, the results suggest that for students who do not initially identify as STEM career-bound, afterschool programming may not necessarily promote preparation for STEM careers due to an accumulation of weak math and science school experiences and other socio-environmental influences. 
    more » « less
  3. Despite limited success in broadening participation in engineering with rural and Appalachian youth, there remain challenges such as misunderstandings around engineering careers, misalignments with youth’s sociocultural background, and other environmental barriers. In addition, middle school science teachers may be unfamiliar with engineering or how to integrate engineering concepts into science lessons. Furthermore, teachers interested in incorporating engineering into their curriculum may not have the time or resources to do so. The result may be single interventions such as a professional development workshop for teachers or a career day for students. However, those are unlikely to cause major change or sustained interest development. To address these challenges, we have undertaken our NSF ITEST project titled, Virginia Tech Partnering with Educators and Engineers in Rural Schools (VT PEERS). Through this project, we sought to improve youth awareness of and preparation for engineering related careers and educational pathways. Utilizing regular engagement in engineering-aligned classroom activities and culturally relevant programming, we sought to spark an interest with some students. In addition, our project involves a partnership with teachers, school districts, and local industry to provide a holistic and, hopefully, sustainable influence. By engaging over time we aspired to promote sustainability beyond this NSF project via increased teacher confidence with engineering related activities, continued integration within their science curriculum, and continued relationships with local industry. From the 2017-2020 school years the project has been in seven schools across three rural counties. Each year a grade level was added; that is, the teachers and students from the first year remained for all three years. Year 1 included eight 6th grade science teachers, year 2 added eight 7th grade science teachers, and year 3 added three 8th grade science teachers and a career and technology teacher. The number of students increased from over 500 students in year 1 to over 2500 in year 3. Our three industry partners have remained active throughout the project. During the third and final year in the classrooms, we focused on the sustainable aspects of the project. In particular, on how the intervention support has evolved each year based on data, support requests from the school divisions, and in scaffolding “ownership” of the engineering activities. Qualitative data were used to support our understanding of teachers’ confidence to incorporate engineering into their lessons plans and how their confidence changed over time. Noteworthy, our student data analysis resulted in an instrument change for the third year; however due to COVID, pre and post data was limited to schools who taught on a semester basis. Throughout the project we have utilized the ITEST STEM Workforce Education Helix model to support a pragmatic approach of our research informing our practice to enable an “iterative relationship between STEM content development and STEM career development activities… within the cultural context of schools, with teachers supported by professional development, and through programs supported by effective partnerships.” For example, over the course of the project, scaffolding from the University leading interventions to teachers leading interventions occurred. 
    more » « less
  4. This research was part of the first year of a National Science Foundation funded project aimed at promoting high school students’ interest in green energy, robotics, automation and postsecondary engineering and technology study. High school teachers, undergraduate majors in STEM areas, and community based non-profit organizations were involved in this afterschool engineering program for high school students with the goal of broadening participation among minoritized groups in engineering and engineering technology. This study investigated how these different stakeholders’ views aligned and diverged about (1) the characteristics of STEM engagement, and (2) the factors that influence the development of engineering identities. The purpose of this investigation was to uncover the relationships between community members’ viewpoints, community assets, and the positionality of the project personnel. 
    more » « less
  5. To promote interest and future choices around STEM careers, afterschool and other informal education programs have become key access points for students who may face greater challenges in entering STEM career pathways. Individual, environmental (including social), and behavioral factors each interact in ways that can promote interest and access to STEM learning and career opportunities or can limit such opportunities. Teachers, programs, and curriculum are all contextual factors that are important. Using Ecological Systems Theory, this study explored the environmental structures that influenced STEM teachers and undergraduate STEM majors’ access to STEM and compared those influences to the environmental structures they perceived related to high school students access to STEM. A potential barrier between the curriculum as it is developed, and whom it is developed by, and the teachers who are responsible for implementing it came into focus in this study. Areas of conflict between the values of curriculum developers and implementers can have consequences for learners and their STEM access. 
    more » « less