skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: An Alternative Ensemble Streamflow Prediction Approach Using Improved Subseasonal Precipitation Forecasts from the North America Multi-Model Ensemble Phase II
Abstract Streamflow forecasting at a subseasonal time scale (10–30 days into the future) is important for various human activities. The ensemble streamflow prediction (ESP) is a widely applied technique for subseasonal streamflow forecasting. However, ESP’s reliance on the randomly resampled historical precipitation limits its predictive capability. Available dynamical subseasonal precipitation forecasts provide an alternative to the randomly resampled precipitation in ESP. Prior studies found the predictive performance of raw subseasonal precipitation forecast is limited in many regions such as the central south of the United States, which raises questions about its effectiveness in assisting streamflow forecasting. To further assess the hydrologic applicability of dynamical subseasonal precipitation forecasts, we test the subseasonal precipitation forecast from North America Multi-Model Ensemble Phase II (NMME-2) at four watersheds in the central south region of the United States. The subseasonal precipitation forecasts are postprocessed with bias correction and spatial disaggregation (BCSD) to correct bias and improve spatial resolution before replacing the randomly resampled precipitation in ESP for streamflow predictions. The performance of the resulting streamflow predictions is benchmarked with ESP. Evaluation is conducted using Kling–Gupta Efficiency (KGE), continuous ranked probability score (CRPS), probability of detection (POD), false alarm ratios (FARs), as well as reliability diagrams. Our results suggest that BCSD-corrected subseasonal precipitation forecasts lead to overall improved streamflow predictions due to added skills in winter and spring. Our results also suggest that BCSD-corrected subseasonal precipitation forecasts lead to improved predictions on the occurrence of high-percentile streamflow values above 75%. Overall, BCSD-corrected subseasonal precipitation has shown promising performance, highlighting its potential broader applications for river and flood forecasting.  more » « less
Award ID(s):
2236926
PAR ID:
10598228
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
American Meteorology Society
Date Published:
Journal Name:
Journal of Hydrometeorology
Volume:
26
Issue:
3
ISSN:
1525-755X
Page Range / eLocation ID:
309 to 326
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Producing high-quality forecasts of key climate variables, such as temperature and precipitation, on subseasonal time scales has long been a gap in operational forecasting. This study explores an application of machine learning (ML) models as postprocessing tools for subseasonal forecasting. Lagged numerical ensemble forecasts (i.e., an ensemble where the members have different initialization dates) and observational data, including relative humidity, pressure at sea level, and geopotential height, are incorporated into various ML methods to predict monthly average precipitation and 2-m temperature 2 weeks in advance for the continental United States. For regression, quantile regression, and tercile classification tasks, we consider using linear models, random forests, convolutional neural networks, and stacked models (a multimodel approach based on the prediction of the individual ML models). Unlike previous ML approaches that often use ensemble mean alone, we leverage information embedded in the ensemble forecasts to enhance prediction accuracy. Additionally, we investigate extreme event predictions that are crucial for planning and mitigation efforts. Considering ensemble members as a collection of spatial forecasts, we explore different approaches to using spatial information. Trade-offs between different approaches may be mitigated with model stacking. Our proposed models outperform standard baselines such as climatological forecasts and ensemble means. In addition, we investigate feature importance, trade-offs between using the full ensemble or only the ensemble mean, and different modes of accounting for spatial variability. Significance StatementAccurately forecasting temperature and precipitation on subseasonal time scales—2 weeks–2 months in advance—is extremely challenging. These forecasts would have immense value in agriculture, insurance, and economics. Our paper describes an application of machine learning techniques to improve forecasts of monthly average precipitation and 2-m temperature using lagged physics-based predictions and observational data 2 weeks in advance for the entire continental United States. For lagged ensembles, the proposed models outperform standard benchmarks such as historical averages and averages of physics-based predictions. Our findings suggest that utilizing the full set of physics-based predictions instead of the average enhances the accuracy of the final forecast. 
    more » « less
  2. Abstract The Ensemble Streamflow Prediction (ESP) framework combines a probabilistic forecast structure with process‐based models for water supply predictions. However, process‐based models require computationally intensive parameter estimation, increasing uncertainties and limiting usability. Motivated by the strong performance of deep learning models, we seek to assess whether the Long Short‐Term Memory (LSTM) model can provide skillful forecasts and replace process‐based models within the ESP framework. Given challenges inimplicitlycapturing snowpack dynamics within LSTMs for streamflow prediction, we also evaluated the added skill ofexplicitlyincorporating snowpack information to improve hydrologic memory representation. LSTM‐ESPs were evaluated under four different scenarios: one excluding snow and three including snow with varied snowpack representations. The LSTM models were trained using information from 664 GAGES‐II basins during WY1983–2000. During a testing period, WY2001–2010, 80% of basins exhibited Nash‐Sutcliffe Efficiency (NSE) above 0.5 with a median NSE of around 0.70, indicating satisfactory utility in simulating seasonal water supply. LSTM‐ESP forecasts were then tested during WY2011–2020 over 76 western US basins with operational Natural Resources Conservation Services (NRCS) forecasts. A key finding is that in high snow regions, LSTM‐ESP forecasts using simplified ablation assumptions performed worse than those excluding snow, highlighting that snow data do not consistently improve LSTM‐ESP performance. However, LSTM‐ESP forecasts that explicitly incorporated past years' snow accumulation and ablation performed comparably to NRCS forecasts and better than forecasts excluding snow entirely. Overall, integrating deep learning within an ESP framework shows promise and highlights important considerations for including snowpack information in forecasting. 
    more » « less
  3. Abstract Hurricanes have been the most destructive and expensive hydrometeorological event in U.S. history, causing catastrophic winds and floods. Hurricane dynamics can significantly impact the amount and spatial extent of storm precipitation. However, the complex interactions of hurricane intensity and precipitation and the impacts of improving hurricane dynamics on streamflow forecasts are not well established yet. This paper addresses these gaps by comprehensively characterizing the role of vertical diffusion in improving hurricane intensity and streamflow forecasts under different planetary boundary layer, microphysics, and cumulus parameterizations. To this end, the Weather Research and Forecasting (WRF) atmospheric model is coupled with the WRF hydrological (WRF-Hydro) model to simulate four major hurricanes landfalling in three hurricane-prone regions in the United States. First, a stepwise calibration is carried out in WRF-Hydro, which remarkably reduces streamflow forecast errors compared to the U.S. Geological Survey (USGS) gauges. Then, 60 coupled hydrometeorological simulations were conducted to evaluate the performance of current weather parameterizations. All schemes were shown to underestimate the observed intensity of the considered major hurricanes since their diffusion is overdissipative for hurricane flow simulations. By reducing the vertical diffusion, hurricane intensity forecasts were improved by ∼39.5% on average compared to the default models. These intensified hurricanes generated more intense and localized precipitation forcing. This enhancement in intensity led to ∼16% and ∼34% improvements in hurricane streamflow bias and correlation forecasts, respectively. The research underscores the role of improved hurricane dynamics in enhancing flood predictions and provides new insights into the impacts of vertical diffusion on hurricane intensity and streamflow forecasts. Significance StatementDespite significant recent improvements, numerical weather prediction models struggle to accurately forecast hurricane intensity and track due to many reasons such as inaccurate physical parameterization for hurricane flows. Furthermore, the performance of existing physics schemes is not well studied for hurricane flood forecasting. This study bridges these knowledge gaps by extensively evaluating different physical parameterizations for hurricane track, intensity, and flood forecasts using an atmospheric model coupled with a hydrological model. Then, a reduced diffusion boundary layer scheme is developed, making remarkable improvements in hurricane intensity forecasts due to the overdissipative nature of the considered schemes for major hurricane simulations. This reduced diffusion model is shown to significantly enhance hurricane flood forecasts, indicating the significance of hurricane dynamics on its induced precipitation. 
    more » « less
  4. Abstract The February 2021 cold air outbreak (CAO) was a high‐impact event in the South‐Central Plains of the United States. This study examines important precursors to the event that likely impacted its predictability in subseasonal forecasts. We use reanalysis to show that the CAO was facilitated by two distinct wave breaks—an East Siberian Sea anticyclonic wave break and a Labrador Sea cyclonic wave break. We also use European Center for Medium‐Range Weather Forecasts and National Center for Environmental Prediction subseasonal‐to‐seasonal models to investigate the impact of the wave breaks on the forecast skill of the event at a ∼2–3 weeks lead time. Ensemble members successfully simulating these features produce more negative temperature anomalies across the Great Plains, corresponding to better positioning of anomalous ridging. These results demonstrate that successfully simulating persistent anticyclones can improve central US extreme cold forecasts at long leads. 
    more » « less
  5. Abstract An ensemble postprocessing method is developed to improve the probabilistic forecasts of extreme precipitation events across the conterminous United States (CONUS). The method combines a 3D vision transformer (ViT) for bias correction with a latent diffusion model (LDM), a generative artificial intelligence (AI) method, to postprocess 6-hourly precipitation ensemble forecasts and produce an enlarged generative ensemble that contains spatiotemporally consistent precipitation trajectories. These trajectories are expected to improve the characterization of extreme precipitation events and offer skillful multiday accumulated and 6-hourly precipitation guidance. The method is tested using the Global Ensemble Forecast System (GEFS) precipitation forecasts out to day 6 and is verified against the Climatology-Calibrated Precipitation Analysis (CCPA) data. Verification results indicate that the method generated skillful ensemble members with improved continuous ranked probabilistic skill scores (CRPSSs) and Brier skill scores (BSSs) over the raw operational GEFS and a multivariate statistical postprocessing baseline. It showed skillful and reliable probabilities for events at extreme precipitation thresholds. Explainability studies were further conducted, which revealed the decision-making process of the method and confirmed its effectiveness on ensemble member generation. This work introduces a novel, generative AI–based approach to address the limitation of small numerical ensembles and the need for larger ensembles to identify extreme precipitation events. Significance StatementWe use a new artificial intelligence (AI) technique to improve extreme precipitation forecasts from a numerical weather prediction ensemble, generating more scenarios that better characterize extreme precipitation events. This AI-generated ensemble improved the accuracy of precipitation forecasts and probabilistic warnings for extreme precipitation events. The study explores AI methods to generate precipitation forecasts and explains the decision-making mechanisms of such AI techniques to prove their effectiveness. 
    more » « less