skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Setting a Better Default: Designing a Welcome Academy for New Faculty Centered on Inclusive Teaching in Engineering
This design case describes a Welcome Academy for New Faculty in Engineering. To situate the design, this work is motivated by the documented need to make STEM education more inclusive. This need has prompted extensive research on best practices for inclusive teaching, but less is known about how to translate that research into actual teaching practice. This design case addresses that difficulty. Influenced by Thaler and Sunstein’s theory of nudging, the Welcome Academy resets the default to expect inclusive teaching. To develop the design, we organized an off-campus summit to solicit input from current engineering faculty on the question, “What do new engineering faculty need to know about diversity, equity, and inclusion (DEI)?” That input guided the creation of a four-hour workshop, delivered the morning after campus-wide new faculty orientation, that included an icebreaker, basic campus demographics, curated DEI-related resources, a campus tour emphasizing historical power dynamics, and presentations by current engineering students. To depict the experience of the design, we describe the final implementation, which varied from the design at points, and the unanimously positive feedback from new faculty. That feedback, however, was not the result of a flawless implementation: We also describe a number of failures that will improve subsequent iterations of the Welcome Academy, emphasizing the importance of communication, respect, and flexibility.  more » « less
Award ID(s):
2040095
PAR ID:
10598377
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Association of Educational Communications and Technology
Date Published:
Journal Name:
International Journal of Designs for Learning
Volume:
15
Issue:
2
ISSN:
2159-449X
Page Range / eLocation ID:
14 to 25
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work describes an effort to nudge engineering faculty toward adopting known best practices for inclusive teaching through a program called Engineering is Not Neutral: Transforming Instruction via Collaboration and Engagement Faculty (ENNTICE). This monthly faculty learning community (FLC) followed the three-year structure of the Colorado Equity Toolkit: Year 1 (reported in 2022) focused on self-inquiry including reflection; Year 2 (reported in 2023) focused on course design including training new engineering faculty; Year 3 (reported in the current paper) focused on building community. The emphasis on building community allows us to address our research question: To what degree does faculty participation in an FLC impact engineering college culture? Building community is measured through broadening participation by faculty in known best practices for inclusive teaching, including three elements of interest. First, we share within our engineering college the progress each department has made toward inclusive teaching participation, using thermometer-styled graphics like those used to illustrate progress toward a fundraising goal. Second, after reviewing certain sections of our engineering college’s plan for diversity, equity, and inclusion (DEI), we submitted brainstormed ideas for implementation to our dean’s office. And third, after reviewing reports from student focus groups conducted in 2020/21, we evaluated progress and made recommendations for next steps; in this context the clarity and urgency of the student feedback is both motivational and difficult to ignore. The common theme in each of three elements is seeking to bridge the valley of neglect that so often divides scholarly work about DEI from concrete changes that benefit students, employers, and the broader community. 
    more » « less
  2. To broaden efforts for improving diversity, equity, and inclusion (DEI) in biomedical engineering (BME) education—a key area of emphasis is the integration of inclusive teaching practices. While BME faculty generally support these efforts, translating support into action remains challenging. This project aimed to address this need through a 3-phase inclusive teaching training, consisting of graduate students, faculty, and engineering education consultants. In Phase I, graduate students and faculty participated in a 6-week learning community on inclusive teaching (Foundational Learning). In Phase II, graduate students were paired with faculty to modify or develop new inclusive teaching materials to be integrated into a BME course (Experiential Learning). Phase III was the implementation of these materials. To assess Phases I & II, graduate student participants reflected on their experiences on the project. To assess Phase III, surveys were administered to students in IT-BME-affiliated courses as well as those taking other BME-related courses. Phases I & II: graduate students responded positively to the opportunity to engage in this inclusive teaching experiential learning opportunity. Phase III: survey results indicated that the incorporation of inclusive teaching practices in BME courses enhanced the student learning experience. The IT-BME project supported graduate students and faculty in learning about, creating, and implementing inclusive teaching practices in a collaborative and supportive environment. This project will serve to both train the next class of instructors and use their study of inclusive teaching concepts to facilitate the creation of ideas and materials that will benefit the BME curriculum and students. 
    more » « less
  3. In the College of Engineering, Design and Computing at the University of Colorado Denver, a faculty learning community (FLC) is exploring how to apply known pedagogical practices intended to foster equity and inclusion. Faculty come from all five departments of the college. For this three-year NSF-funded project, Year 1 was dedicated to deepening reflection as individuals and building trust as a cohort. Now, in Year 2, the FLC is focused on translating pedagogical practices from literature and other resources into particular courses. This cohort has experienced some adjustments as some faculty leave the FLC and new faculty choose to join the FLC. Since this cohort continues to grow, this paper presents key features that have supported the FLC’s formation and then transition to Year 2, as well as the design and implementation of a new faculty orientation, called the Welcome Academy, specific to new engineering faculty and practices related to diversity, equity, and inclusion. Finally, drawing on the principal investigator (PI) team’s reflections as well as feedback from external evaluators, we provide our insights with the intention of sharing useful experiences to other colleges planning to form such FLCs. 
    more » « less
  4. Abstract BackgroundThe lack of racial diversity in science, technology, engineering, and mathematics (STEM) disciplines is perhaps one of the most challenging issues in the United States higher education system. The issue is not only concerning diverse students, but also diverse faculty members. One important contributing factor is the faculty hiring process. To make progress toward equity in hiring decisions, it is necessary to better understand how applicants are considered and evaluated. In this paper, we describe and present our study based on a survey of current STEM faculty members and administrators who examined applicant qualifications and characteristics in STEM faculty hiring decisions. ResultsThere are three key findings of the present research. First, we found that faculty members placed different levels of importance on characteristics and qualifications for tenure track hiring and non-tenure track hiring. For example, items related to research were more important when evaluating tenure track applicants, whereas items related to teaching and diversity were more important when evaluating non-tenure track applicants. Second, faculty members’ institutional classification, position, and personal identities (e.g., gender, race/ethnicity) had an impact on their evaluation criteria. For instance, we found men considered some diversity-related items more important than women. Third, faculty members rated the importance of qualifications with diversity, equity, and inclusion (DEI)-related constructs significantly lower than qualifications that did not specify DEI-related constructs, and this trend held for both tenure track and non-tenure track faculty hiring. ConclusionsThis study was an attempt to address the issue of diversity in STEM faculty hiring at institutions of higher education by examining how applicant characteristics are considered and evaluated in faculty hiring practices. Emphasizing research reputation and postdoctoral reputation while neglecting institutional diversity and equitable and inclusive teaching, research, and service stunt progress toward racial diversity because biases—both implicit and explicit, both positive and negative—still exist. Our results were consistent with research on bias in recruitment, revealing that affinity bias, confirmation bias, and halo bias exist in the faculty hiring process. These biases contribute to inequities in hiring, and need to be addressed before we can reach, sustain, and grow desired levels of diversity. 
    more » « less
  5. Abstract BackgroundThis paper begins with the premise that ethics and diversity, equity, and inclusion (DEI) overlap in engineering. Yet, the topics of ethics and DEI often inhabit different scholarly spaces in engineering education, thus creating a divide between these topics in engineering education research, teaching, and practice. PurposeWe investigate the research question, “How are ethics and DEI explicitly connected in peer‐reviewed literature in engineering education and closely related fields?” DesignWe used systematic review procedures to synthesize intersections between ethics and DEI in engineering education scholarly literature. We extracted literature from engineering and engineering education databases and used thematic analysis to identify ethics/DEI connections. ResultsWe identified three primary themes (each with three sub‐themes): (1) lenses that serve to connect ethics and DEI (social, justice‐oriented, professional), (2) roots that inform how ethics and DEI connect in engineering (individual demographics, disciplinary cultures, institutional cultures); and (3) engagement strategies for promoting ethics and DEI connections in engineering (affinity toward ethics/DEI content, understanding diverse stakeholders, working in diverse teams). ConclusionsThere is a critical mass of engineering education scholars explicitly exploring connections between ethics and DEI in engineering. Based on this review, potential benefits of integrating ethics and DEI in engineering include cultivating a socially just world and shifting engineering culture to be more inclusive and equitable, thus accounting for the needs and values of students and faculty from diverse backgrounds. 
    more » « less