Online Allocation of Reusable Resources: New Algorithms and Analytical Tools In the paper “Asymptotically Optimal Competitive Ratio for Online Allocation of Reusable Resources,” the authors develop novel algorithms and analysis techniques for online allocation of reusable resources. Their approach leads to an algorithm with the highest possible competitive ratio, a result that was previously out of reach with the algorithms and techniques that are used in classic settings in which resources are nonreusable. More generally, their LP-free analysis approach is useful for analyzing the performance of online algorithms for various other settings in which the standard primal-dual approach fails.
more »
« less
Technical Note—Near-Optimal Bayesian Online Assortment of Reusable Resources
Near-Optimal Bayesian Online Assortment of Reusable Resources Motivated by rental services in e-commerce, we consider revenue maximization in the online assortment of reusable resources for different types of arriving consumers. We design competitive online algorithms compared with the optimal online policy in the Bayesian setting, where consumer types are drawn independently from known heterogeneous distributions over time. In scenarios with large initial inventories, our main result is a near-optimal competitive algorithm for reusable resources. Our algorithm relies on an expected linear programming (LP) benchmark, solves this LP, and simulates the solution through independent randomized rounding. The main challenge is achieving inventory feasibility efficiently using these simulation-based algorithms. To address this, we design discarding policies for each resource, balancing inventory feasibility and revenue loss. Discarding a unit of a resource impacts future consumption of other resources, so we introduce postprocessing assortment procedures to design and analyze our discarding policies. Additionally, we present an improved competitive algorithm for nonreusable resources and evaluate our algorithms using numerical simulations on synthetic data.
more »
« less
- Award ID(s):
- 2312156
- PAR ID:
- 10598487
- Publisher / Repository:
- INFORMS
- Date Published:
- Journal Name:
- Operations Research
- Volume:
- 72
- Issue:
- 5
- ISSN:
- 0030-364X
- Page Range / eLocation ID:
- 1861 to 1873
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Motivated by the emerging paradigm of resource allocation that integrates classical objectives, such as cost minimization, with societal objectives, such as carbon awareness, this paper proposes a general framework for the online fair allocation of reusable resources. Within this framework, an online decision-maker seeks to allocate a finite resource with capacityCto a sequence of requests arriving with unknown distributions of types, utilities, and resource usage durations. To accommodate diverse objectives, the framework supports multiple actions and utility types, and the goal is to achieve max-min fairness among utilities, i.e., maximize the minimum time-averaged utility across all utility types. Our performance metric is an (α,β)-competitive guarantee of the form: ALG ≥ α • OPT*- O(Tβ-1),; α, β ∈ (0, 1], where OPT*and ALG are the time-averaged optimum and objective value achieved by the decision maker, respectively. We propose a novel algorithm that achieves a competitive guarantee of (1-O(√(log C/C)), 2/3) under the bandit feedback. As resource capacity increases, the multiplicative competitive ratio term 1-O(√ logC/C) asymptotically approaches optimality. Notably, when the resource capacity exceeds a certain threshold, our algorithm achieves an improved competitive guarantee of (1, 2/3). Our algorithm employs an optimistic penalty-weight mechanism coupled with a dual exploration-discarding strategy to balance resource feasibility, exploration, and fairness among utilities.more » « less
-
We consider dynamic assortment problems with reusable products, in which each arriving customer chooses a product within an offered assortment, uses the product for a random duration of time, and returns the product back to the firm to be used by other customers. The goal is to find a policy for deciding on the assortment to offer to each customer so that the total expected revenue over a finite selling horizon is maximized. The dynamic-programming formulation of this problem requires a high-dimensional state variable that keeps track of the on-hand product inventories, as well as the products that are currently in use. We present a tractable approach to compute a policy that is guaranteed to obtain at least 50% of the optimal total expected revenue. This policy is based on constructing linear approximations to the optimal value functions. When the usage duration is infinite or follows a negative binomial distribution, we also show how to efficiently perform rollout on a simple static policy. Performing rollout corresponds to using separable and nonlinear value function approximations. The resulting policy is also guaranteed to obtain at least 50% of the optimal total expected revenue. The special case of our model with infinite usage durations captures the case where the customers purchase the products outright without returning them at all. Under infinite usage durations, we give a variant of our rollout approach whose total expected revenue differs from the optimal by a factor that approaches 1 with rate cubic-root of Cmin, where Cmin is the smallest inventory of a product. We provide computational experiments based on simulated data for dynamic assortment management, as well as real parking transaction data for the city of Seattle. Our computational experiments demonstrate that the practical performance of our policies is substantially better than their performance guarantees and that performing rollout yields noticeable improvements.more » « less
-
Bipartite-matching markets pair agents on one side of a market with agents, items, or contracts on the opposing side. Prior work addresses online bipartite-matching markets, where agents arrive over time and are dynamically matched to a known set of disposable resources. In this article, we propose a new model, Online Matching with (offline) Reusable Resources under Known Adversarial Distributions ( OM-RR-KAD ) , in which resources on the offline side are reusable instead of disposable; that is, once matched, resources become available again at some point in the future. We show that our model is tractable by presenting an LP-based non-adaptive algorithm that achieves an online competitive ratio of ½-ϵ for any given constant ϵ > 0. We also show that no adaptive algorithm can achieve a ratio of ½ + o (1) based on the same benchmark LP. Through a data-driven analysis on a massive openly available dataset, we show our model is robust enough to capture the application of taxi dispatching services and ride-sharing systems. We also present heuristics that perform well in practice.more » « less
-
Bipartite matching markets pair agents on one side of a market with agents, items, or contracts on the opposing side. Prior work addresses online bipartite matching markets, where agents arrive over time and are dynamically matched to a known set of disposable resources. In this paper, we propose a new model, Online Matching with (offline) Reusable Resources under Known Adversarial Distributions (OM-RR-KAD), in which resources on the offline side are reusable instead of disposable; that is, once matched, resources become available again at some point in the future. We show that our model is tractable by presenting an LP-based adaptive algorithm that achieves an online competitive ratio of 1/2 - epsilon for any given epsilon > 0. We also show that no non-adaptive algorithm can achieve a ratio of 1/2 + o(1) based on the same benchmark LP. Through a data-driven analysis on a massive openly-available dataset, we show our model is robust enough to capture the application of taxi dispatching services and ridesharing systems. We also present heuristics that perform well in practice.more » « less
An official website of the United States government

