skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 28, 2026

Title: On the well-posedness of the periodic fractional Schrödinger equation
We consider the periodic fractional nonlinear Schroedinger equation, where the nonlinearity is expressed in two ways either as a derivative of a polynomial (including negative powers, such including logarithmic nonlinearities), or given as a sum of powers, possibly infinite. We obtain the local well-posedness for the Cauchy problem of this equation in weighted Sobolev spaces and with non-vanishing initial data.  more » « less
Award ID(s):
2050971 2055130
PAR ID:
10598501
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Partial Differential Equations and Applications
Volume:
6
Issue:
3
ISSN:
2662-2963
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We consider two types of the generalized Korteweg–de Vries equation, where the nonlinearity is given with or without absolute values, and, in particular, including the low powers of nonlinearity, an example of which is the Schamel equation. We first prove the local well-posedness of both equations in a weighted subspace of H 1 that includes functions with polynomial decay, extending the result of Linares et al (2019 Commun. Contemp. Math. 21 1850056) to fractional weights. We then investigate solutions numerically, confirming the well-posedness and extending it to a wider class of functions that includes exponential decay. We include a comparison of solutions to both types of equations, in particular, we investigate soliton resolution for the positive and negative data with different decay rates. Finally, we study the interaction of various solitary waves in both models, showing the formation of solitons, dispersive radiation and even breathers, all of which are easier to track in nonlinearities with lower power. 
    more » « less
  2. We investigate the well-posedness in the generalized Hartree equation [Formula: see text], [Formula: see text], [Formula: see text], for low powers of nonlinearity, [Formula: see text]. We establish the local well-posedness for a class of data in weighted Sobolev spaces, following ideas of Cazenave and Naumkin, Local existence, global existence, and scattering for the nonlinear Schrödinger equation, Comm. Contemp. Math. 19(2) (2017) 1650038. This crucially relies on the boundedness of the Riesz transform in weighted Lebesgue spaces. As a consequence, we obtain a class of data that exists globally, moreover, scatters in positive time. Furthermore, in the focusing case in the [Formula: see text]-supercritical setting we obtain a subset of locally well-posed data with positive energy, which blows up in finite time. 
    more » « less
  3. Let $$k$$ be a natural number and let $$c=2.134693\ldots$$ be the unique real solution of the equation $$2c=2+\log (5c-1)$$ in $$[1,\infty)$$. Then, when $$s\ge ck+4$$, we establish an asymptotic lower bound of the expected order of magnitude for the number of representations of a large positive integer as the sum of one prime and $$s$$ positive integral $$k$$-th powers. 
    more » « less
  4. null (Ed.)
    We derive a radiative transfer equation that accounts for coupling from surface waves to body waves and the other way around. The model is the acoustic wave equation in a two-dimensional waveguide with reflecting boundary. The waveguide has a thin, weakly randomly heterogeneous layer near the top surface, and a thick homogeneous layer beneath it. There are two types of modes that propagate along the axis of the waveguide: those that are almost trapped in the thin layer, and thus model surface waves, and those that penetrate deep in the waveguide, and thus model body waves. The remaining modes are evanescent waves. We introduce a mathematical theory of mode coupling induced by scattering in the thin layer, and derive a radiative transfer equation which quantifies the mean mode power exchange.We study the solution of this equation in the asymptotic limit of infinite width of the waveguide. The main result is a quantification of the rate of convergence of the mean mode powers toward equipartition. 
    more » « less
  5. Abstract We consider an evolution equation involving the fractional powers, of order s ∈ (0, 1), of a symmetric and uniformly elliptic second order operator and Caputo fractional time derivative of order γ ∈ (1, 2]. Since it has been shown useful for the design of numerical techniques for related problems, we also consider a quasi–stationary elliptic problem that comes from the realization of the spatial fractional diffusion as the Dirichlet-to-Neumann map for a nonuniformly elliptic problem posed on a semi–infinite cylinder. We provide existence and uniqueness results together with energy estimates for both problems. In addition, we derive regularity estimates both in time and space; the time–regularity results show that the usual assumptions made in the numerical analysis literature are problematic. 
    more » « less