skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Well-posedness in weighted spaces for the generalized Hartree equation with p < 2
We investigate the well-posedness in the generalized Hartree equation [Formula: see text], [Formula: see text], [Formula: see text], for low powers of nonlinearity, [Formula: see text]. We establish the local well-posedness for a class of data in weighted Sobolev spaces, following ideas of Cazenave and Naumkin, Local existence, global existence, and scattering for the nonlinear Schrödinger equation, Comm. Contemp. Math. 19(2) (2017) 1650038. This crucially relies on the boundedness of the Riesz transform in weighted Lebesgue spaces. As a consequence, we obtain a class of data that exists globally, moreover, scatters in positive time. Furthermore, in the focusing case in the [Formula: see text]-supercritical setting we obtain a subset of locally well-posed data with positive energy, which blows up in finite time.  more » « less
Award ID(s):
1927258
PAR ID:
10408459
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Communications in Contemporary Mathematics
Volume:
24
Issue:
09
ISSN:
0219-1997
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work aims to prove a Hardy-type inequality and a trace theorem for a class of function spaces on smooth domains with a nonlocal character. Functions in these spaces are allowed to be as rough as an [Formula: see text]-function inside the domain of definition but as smooth as a [Formula: see text]-function near the boundary. This feature is captured by a norm that is characterized by a nonlocal interaction kernel defined heterogeneously with a special localization feature on the boundary. Thus, the trace theorem we obtain here can be viewed as an improvement and refinement of the classical trace theorem for fractional Sobolev spaces [Formula: see text]. Similarly, the Hardy-type inequalities we establish for functions that vanish on the boundary show that functions in this generalized space have the same decay rate to the boundary as functions in the smaller space [Formula: see text]. The results we prove extend existing results shown in the Hilbert space setting with p = 2. A Poincaré-type inequality we establish for the function space under consideration together with the new trace theorem allows formulating and proving well-posedness of a nonlinear nonlocal variational problem with conventional local boundary condition. 
    more » « less
  2. A rational projective plane ([Formula: see text]) is a simply connected, smooth, closed manifold [Formula: see text] such that [Formula: see text]. An open problem is to classify the dimensions at which such a manifold exists. The Barge–Sullivan rational surgery realization theorem provides necessary and sufficient conditions that include the Hattori–Stong integrality conditions on the Pontryagin numbers. In this paper, we simplify these conditions and combine them with the signature equation to give a single quadratic residue equation that determines whether a given dimension supports a [Formula: see text]. We then confirm the existence of a [Formula: see text] in two new dimensions and prove several non-existence results using factorization of the numerators of the divided Bernoulli numbers. We also resolve the existence question in the Spin case, and we discuss existence results for the more general class of rational projective spaces. 
    more » « less
  3. We consider the periodic fractional nonlinear Schroedinger equation, where the nonlinearity is expressed in two ways either as a derivative of a polynomial (including negative powers, such including logarithmic nonlinearities), or given as a sum of powers, possibly infinite. We obtain the local well-posedness for the Cauchy problem of this equation in weighted Sobolev spaces and with non-vanishing initial data. 
    more » « less
  4. We obtain regularity results in weighted Sobolev spaces for the solution of the obstacle problem for the integral fractional Laplacian [Formula: see text] in a Lipschitz bounded domain [Formula: see text] satisfying the exterior ball condition. The weight is a power of the distance to the boundary [Formula: see text] of [Formula: see text] that accounts for the singular boundary behavior of the solution for any [Formula: see text]. These bounds then serve us as a guide in the design and analysis of a finite element scheme over graded meshes for any dimension [Formula: see text], which is optimal for [Formula: see text]. 
    more » « less
  5. Abstract We study a wave equation in dimension $$d\in \{1,2\}$$ with a multiplicative space-time Gaussian noise. The existence and uniqueness of the Stratonovich solution is obtained under some conditions imposed on the Gaussian noise. The strategy is to develop some Strichartz-type estimates for the wave kernel in weighted Besov spaces, by which we can prove the well-posedness of an associated Young-type equation. Those Strichartz bounds are of independent interest. 
    more » « less