skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Regularity of solutions to space–time fractional wave equations: A PDE approach
Abstract We consider an evolution equation involving the fractional powers, of order s ∈ (0, 1), of a symmetric and uniformly elliptic second order operator and Caputo fractional time derivative of order γ ∈ (1, 2]. Since it has been shown useful for the design of numerical techniques for related problems, we also consider a quasi–stationary elliptic problem that comes from the realization of the spatial fractional diffusion as the Dirichlet-to-Neumann map for a nonuniformly elliptic problem posed on a semi–infinite cylinder. We provide existence and uniqueness results together with energy estimates for both problems. In addition, we derive regularity estimates both in time and space; the time–regularity results show that the usual assumptions made in the numerical analysis literature are problematic.  more » « less
Award ID(s):
1720213
PAR ID:
10093769
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Fractional Calculus and Applied Analysis
Volume:
21
Issue:
5
ISSN:
1311-0454
Page Range / eLocation ID:
1262 to 1293
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper we study the existence, the optimal regularity of solutions, and the regularity of the free boundary near the so-called \emph{regular points} in a thin obstacle problem that arises as the local extension of the obstacle problem for the fractional heat operator $$(\partial_t - \Delta_x)^s$$ for $$s \in (0,1)$$. Our regularity estimates are completely local in nature. This aspect is of crucial importance in our forthcoming work on the blowup analysis of the free boundary, including the study of the singular set. Our approach is based on first establishing the boundedness of the time-derivative of the solution. This allows reduction to an elliptic problem at every fixed time level. Using several results from the elliptic theory, including the epiperimetric inequality, we establish the optimal regularity of solutions as well as $$H^{1+\gamma,\frac{1+\gamma}{2}}$$ regularity of the free boundary near such regular points. 
    more » « less
  2. In this paper, we consider the optimal control of semilinear fractional PDEs with both spectral and integral fractional diffusion operators of order 2 s with s ∈ (0, 1). We first prove the boundedness of solutions to both semilinear fractional PDEs under minimal regularity assumptions on domain and data. We next introduce an optimal growth condition on the nonlinearity to show the Lipschitz continuity of the solution map for the semilinear elliptic equations with respect to the data. We further apply our ideas to show existence of solutions to optimal control problems with semilinear fractional equations as constraints. Under the standard assumptions on the nonlinearity (twice continuously differentiable) we derive the first and second order optimality conditions. 
    more » « less
  3. Trélat, E.; Zuazua, E. (Ed.)
    This chapter provides a brief review of recent developments on two nonlocal operators: fractional Laplacian and fractional time derivative. We start by accounting for several applications of these operators in imaging science, geophysics, harmonic maps, and deep (machine) learning. Various notions of solutions to linear fractional elliptic equations are provided and numerical schemes for fractional Laplacian and fractional time derivative are discussed. Special emphasis is given to exterior optimal control problems with a linear elliptic equation as constraints. In addition, optimal control problems with interior control and state constraints are considered. We also provide a discussion on fractional deep neural networks, which is shown to be a minimization problem with fractional in time ordinary differential equation as constraint. The paper concludes with a discussion on several open problems. 
    more » « less
  4. Abstract We consider an optimal control problem where the state equations are a coupled hyperbolic–elliptic system. This system arises in elastodynamics with piezoelectric effects—the elastic stress tensor is a function of elastic displacement and electric potential. The electric flux acts as the control variable and bound constraints on the control are considered. We develop a complete analysis for the state equations and the control problem. The requisite regularity on the control, to show the well-posedness of the state equations, is enforced using the cost functional. We rigorously derive the first-order necessary and sufficient conditions using adjoint equations and further study their well-posedness. For spatially discrete (time-continuous) problems, we show the convergence of our numerical scheme. Three-dimensional numerical experiments are provided showing convergence properties of a fully discrete method and the practical applicability of our approach. 
    more » « less
  5. The analyses of interior penalty discontinuous Galerkin methods of any order k for solving elliptic and parabolic problems with Dirac line sources are presented. For the steady state case, we prove convergence of the method by deriving a priori error estimates in the L 2 norm and in weighted energy norms. In addition, we prove almost optimal local error estimates in the energy norm for any approximation order. Further, almost optimal local error estimates in the L 2 norm are obtained for the case of piecewise linear approximations whereas suboptimal error bounds in the L 2 norm are shown for any polynomial degree. For the time-dependent case, convergence of semi-discrete and of backward Euler fully discrete scheme is established by proving error estimates in L 2 in time and in space. Numerical results for the elliptic problem are added to support the theoretical results. 
    more » « less