Abstract Extreme weather events have devastating impacts on human health, economic activities, ecosystems, and infrastructure. It is therefore crucial to anticipate extremes and their impacts to allow for preparedness and emergency measures. There is indeed potential for probabilistic subseasonal prediction on time scales of several weeks for many extreme events. Here we provide an overview of subseasonal predictability for case studies of some of the most prominent extreme events across the globe using the ECMWF S2S prediction system: heatwaves, cold spells, heavy precipitation events, and tropical and extratropical cyclones. The considered heatwaves exhibit predictability on time scales of 3–4 weeks, while this time scale is 2–3 weeks for cold spells. Precipitation extremes are the least predictable among the considered case studies. Tropical cyclones, on the other hand, can exhibit probabilistic predictability on time scales of up to 3 weeks, which in the presented cases was aided by remote precursors such as the Madden–Julian oscillation. For extratropical cyclones, lead times are found to be shorter. These case studies clearly illustrate the potential for event-dependent advance warnings for a wide range of extreme events. The subseasonal predictability of extreme events demonstrated here allows for an extension of warning horizons, provides advance information to impact modelers, and informs communities and stakeholders affected by the impacts of extreme weather events.
more »
« less
A global overview of marine heatwaves in a changing climate
Abstract Marine heatwaves have profoundly impacted marine ecosystems over large areas of the world oceans, calling for improved understanding of their dynamics and predictability. Here, we critically review the recent substantial advances in this active area of research, including the exploration of the three-dimensional structure and evolution of these extremes, their drivers, their connection with other extremes in the ocean and over land, future projections, and assessment of their predictability and current prediction skill. To make progress on predicting and projecting marine heatwaves and their impacts, a more complete mechanistic understanding of these extremes over the full ocean depth and at the relevant spatial and temporal scales is needed, together with models that can realistically capture the leading mechanisms at those scales. Sustained observing systems, as well as measuring platforms that can be rapidly deployed, are essential to achieve comprehensive event characterizations while also chronicling the evolving nature of these extremes and their impacts in our changing climate.
more »
« less
- Award ID(s):
- 1752724
- PAR ID:
- 10598521
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Communications Earth & Environment
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2662-4435
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Recent marine heatwaves in the Gulf of Alaska have had devastating impacts on species from various trophic levels. Due to climate change, total heat exposure in the upper ocean has become longer, more intense, more frequent, and more likely to happen at the same time as other environmental extremes. The combination of multiple environmental extremes can exacerbate the response of sensitive marine organisms. Our hindcast simulation provides the first indication that more than 20% of the bottom water of the Gulf of Alaska continental shelf was exposed to quadruple heat, positive hydrogen ion concentration [H+], negative aragonite saturation state (Ωarag), and negative oxygen concentration [O2] compound extreme events during the 2018–2020 marine heat wave. Natural intrusion of deep and acidified water combined with the marine heat wave triggered the first occurrence of these events in 2019. During the 2013–2016 marine heat wave, surface waters were already exposed to widespread marine heat and positive [H+] compound extreme events due to the temperature effect on the [H+]. We introduce a new Gulf of Alaska Downwelling Index (GOADI) with short‐term predictive skill, which can serve as indicator of past and near‐future positive [H+], negative Ωarag, and negative [O2] compound extreme events near the shelf seafloor. Our results suggest that the marine heat waves may have not been the sole environmental stressor that led to the observed ecosystem impacts and warrant a closer look at existing in situ inorganic carbon and other environmental data in combination with biological observations and model output.more » « less
-
Abstract Antarctic sea ice exhibits considerable regional variability that is influenced by ocean and atmospheric conditions. Previous studies have suggested that this variability may be predictable on seasonal-to-interannual time scales. Here, we use initial-value predictability experiments of the Community Earth System Model, version 2 (CESM2), paired with analysis of the CESM2 large ensemble, to further assess the inherent predictability in regional Antarctic sea ice conditions. As in previous studies, we find that Antarctic sea ice area predictability is high for several months after initialization. It is then lost when ice retreats, and predictability is regained in the following ice advance period. In our simulations, this process acts on multiyear time scales with little sensitivity to the seasonal initialization timing but has a strong regional dependence. Long-lived ocean temperature anomalies in the vicinity of the winter ice edge are the primary source of sea ice predictability. Different predictability characteristics occur across regions, depending on how these ocean temperature anomalies are advected relative to regional sea zones. Our results show that sea ice predictability can impart predictability to primary productivity in the Southern Ocean due to its impact on light availability. This has implications for the understanding and management of Southern Ocean marine ecosystems.more » « less
-
Abstract In the era of escalating climate change, understanding human impacts on marine heatwaves (MHWs) becomes essential. This study harnesses climate model historical and single forcing simulations to delve into the individual roles of anthropogenic greenhouse gases (GHGs) and aerosols in shaping the characteristics of global MHWs over the past several decades. The results suggest that GHG variations lead to longer-lasting, more frequent, and intense MHWs. In contrast, anthropogenic aerosols markedly curb the intensity and growth of MHWs. Further analysis of the sea surface temperature (SST) probability distribution reveals that anthropogenic GHGs and aerosols have opposing effects on the tails of the SST probability distribution, causing the tails to expand and contract, respectively. Climate extremes such as MHWs are accordingly promoted and reduced. Our study underscores the significant impacts of anthropogenic GHGs and aerosols on MHWs, which go far beyond the customary concept that these anthropogenic forcings modulate climate extremes by shifting global SST probabilities via modifying the mean-state SST.more » « less
-
Abstract Protection from direct human impacts can safeguard marine life, yet ocean warming crosses marine protected area boundaries. Here, we test whether protection offers resilience to marine heatwaves from local to network scales. We examine 71,269 timeseries of population abundances for 2269 reef fish species surveyed in 357 protected versus 747 open sites worldwide. We quantify the stability of reef fish abundance from populations to metacommunities, considering responses of species and functional diversity including thermal affinity of different trophic groups. Overall, protection mitigates adverse effects of marine heatwaves on fish abundance, community stability, asynchronous fluctuations and functional richness. We find that local stability is positively related to distance from centers of high human density only in protected areas. We provide evidence that networks of protected areas have persistent reef fish communities in warming oceans by maintaining large populations and promoting stability at different levels of biological organization.more » « less
An official website of the United States government

