In order to meet mobile cellular users’ ever-increasing data demands, today’s 4G and 5G wireless networks are designed mainly with the goal of maximizing spectral efficiency. While they have made progress in this regard, controlling the carbon footprint and operational costs of such networks remains a long-standing problem among network designers. This paper takes a long view on this problem, envisioning a NextG scenario where the network leverages quantum annealing for cellular baseband processing. We gather and synthesize insights on power consumption, computational throughput and latency, spectral efficiency, operational cost, and feasibility timelines surrounding quantum annealing technology. Armed with these data, we project the quantitative performance targets future quantum annealing hardware must meet in order to provide a computational and power advantage over CMOS hardware, while matching its whole-network spectral efficiency. Our quantitative analysis predicts that with 82.32 μs problem latency and 2.68M qubits, quantum annealing will achieve a spectral efficiency equal to CMOS while reducing power consumption by 41 kW (45% lower) in a Large MIMO base station with 400 MHz bandwidth and 64 antennas, and a 160 kW power reduction (55% lower) using 8.04M qubits in a CRAN setting with three Large MIMO base stations.
more »
« less
Densify & Conquer: Densified, smaller base-stations can conquer the increasing carbon footprint problem in nextG wireless
Connectivity on-the-go has been one of the most impressive technological achievements in the 2010s decade. However, multiple studies show that this has come at an expense of increased carbon footprint, that also rivals the entire aviation sector's carbon footprint. The two major contributors of this increased footprint are (a) smartphone batteries which affect the embodied footprint and (b) base-stations that occupy ever-increasing energy footprint to provide the last mile wireless connectivity to smartphones. The root-cause of both these turn out to be the same, which is communicating over the last-mile lossy wireless medium. We show in this paper, titled DensQuer, how base-station densification, which is to replace a single larger base-station with multiple smaller ones, reduces the effect of the last-mile wireless, and in effect conquers both these adverse sources of increased carbon footprint. Backed by a open-source ray-tracing computation framework (Sionna), we show how a strategic densification strategy can minimize the number of required smaller base-stations to practically achievable numbers, which lead to about 3x power-savings in the base-station network. Also, DensQuer is able to also reduce the required deployment height of base-stations to as low as 15m, that makes the smaller cells easily deployable on trees/street poles instead of requiring a dedicated tower. Further, by utilizing newly introduced hardware power rails in Google Pixel 7a and above phones, we also show that this strategic densified network leads to reduction in mobile transmit power by 10-15 dB, leading to about 3x reduction in total cellular power consumption, and about 50\% increase in smartphone battery life when it communicates data via the cellular network.
more »
« less
- Award ID(s):
- 2030245
- PAR ID:
- 10598538
- Publisher / Repository:
- arXiv
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Future wireless cellular networks will utilize millimeter- wave and sub-THz frequencies and deploy small-cell base stations to achieve data rates on the order of hundreds of gigabits per second per user. The move to sub-THz frequencies will require attention to sustainability and reduction of power whenever possible to reduce the carbon footprint while maintaining adequate battery life for the massive number of resource-constrained devices to be deployed. This article analyzes power consumption of future wireless networks using a new metric, a figure of merit called the power waste factor (W), which shows promise for the study and development of “green G” — green technology for future wireless networks. Using W, power efficiency can be considered by quantifying the power wasted by all devices on a signal path in a cascade. We then show that the consumption efficiency factor (CEF), defined as the ratio of the maximum data rate achieved to the total power consumed, is a novel and powerful measure of power efficiency which shows that less energy per bit is expended as the cell size shrinks and carrier frequency and channel bandwidth increase. Our findings offer a standard approach to calculating and comparing power consumption and energy efficiency.more » « less
-
Wireless Sensor Network (WSN) becomes the dominate last-mile connection to cyber-physical systems and Internet-of-Things. However, WSN opens new attack surfaces such as black holes, where sensing information gets lost during relay towards base stations. Current defense mechanisms against black hole attacks require substantial energy consumption, reducing the system's lifetime. This paper proposes a novel approach to detect and recover from black hole attacks using an improved version of Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol. LEACH is an energy-efficient routing protocol for groups of battery-operated sensor nodes in hierarchy. A round of selection for cluster heads is scheduled in a set time. We propose to improve LEACH with Anomaly Report Cycling (ARC-LEACH), tradeoff between security strength and energy cost. ARC-LEACH absorbs an attack when it occurs by rotating cluster heads to reestablish communication and then sending a message from the base station to coordinate all nodes against the malicious nodes. ARC-LEACH actively blocks malicious nodes while leveraging the resilience of LEACH for stronger resistance to blackhole attacks. ARC-LEACH can provide more defense capability when under attack from multiple malicious nodes that would otherwise be defenseless by LEACH, with only minor increase in energy consumption.more » « less
-
The need for continuous coverage, as well as low-latency, and ultrareliable communication in 5G and beyond cellular networks encouraged the deployment of high-altitude platforms and low-altitude drones as flying base stations (FBSs) to provide last-mile communication where high cost or geographical restrictions hinder the installation of terrestrial base stations (BSs) or during the disasters where the BSs are damaged. The performance of unmanned aerial vehicle (UAV)-assisted cellular systems in terms of coverage and quality of service offered for terrestrial users depends on the number of deployed FBSs, their 3-D location as well as trajectory. While several recent works have studied the 3-D positioning in UAV-assisted 5G networks, the problem of jointly addressing coverage and user data rate has not been addressed yet. In this article, we propose a solution for joint 3-D positioning and trajectory planning of FBSs with the objectives of the total distance between users and FBSs and minimizing the sum of FBSs flight distance by developing a fuzzy candidate points selection method.more » « less
-
5G is a high-bandwidth low-latency communication technology that requires deploying new cellular base stations. The environmental cost of deploying a 5G cellular network remains unknown. In this work we answer several questions about the environmental impact of 5G deployment, including: Can we reuse minerals from discarded 4G base stations to build 5G or does 5G require new minerals that were not required in 4G base stations? And, how sustainable is this transition? We answered these questions buy surveying the minerals needed to build 5G base stations. We found that the key technologies behind 5G require additional rare-earth metals to build essential semiconductor components needed for 5G, such as yttrium, barium, gallium, and germanium. Additionally, since 5G needs many more base stations than 4G network to achieve the same coverage, we describe how 5G will likely increase the use of materials like copper, gold, and aluminum, all of which are difficult or impractical to recycle from the 4G base stations they will replace. We estimate that to provide coverage comparable to 4G in the United States, we will need about 600 million 5G base stations, which will consume thousands of tons of these metals and significant amount of fossil fuels, as well as will result in releasing toxic gases during material mining and refining. Despite these environment costs, we also describe the environmental benefits that a 5G network can offer.more » « less
An official website of the United States government

