This paper investigates reconfigurable intelligent surface (RIS)-aided frequency division duplexing (FDD) communication systems. Since the downlink and uplink signals are simultaneously transmitted in FDD, the phase shifts at the RIS should be designed to support both transmissions. Considering a single-user multiple-input multiple-output system, we formulate a weighted sum-rate maximization problem to jointly maximize the downlink and uplink system performance. To tackle the non-convex optimization problem, we adopt an alternating optimization (AO) algorithm, in which two phase shift optimization techniques are developed to handle the unit-modulus constraints induced by the reflection coefficients at the RIS. The first technique exploits the manifold optimization-based algorithm, while the second uses a lower-complexity AO approach. Numerical results verify that the proposed techniques rapidly converge to local optima and significantly improve the overall system performance compared to existing benchmark schemes. 
                        more » 
                        « less   
                    
                            
                            WMMSE-Based Rate Maximization for RIS-Assisted MU-MIMO Systems
                        
                    
    
            Reconfigurable intelligent surface (RIS) technology, given its ability to favorably modify wireless communication environments, will play a pivotal role in the evolution of future communication systems. This paper proposes rate maximization techniques for both single-user and multiuser MIMO systems, based on the well-known weighted minimum mean square error (WMMSE) criterion. Using a suitable weight matrix, the WMMSE algorithm tackles an equivalent weighted mean square error (WMSE) minimization problem to achieve the sum-rate maximization. By considering a more practical RIS system model that employs a tensor-based representation enforced by the electromagnetic behavior exhibited by the RIS panel, we detail both the sum-rate maximizing and WMSE minimizing strategies for RIS phase shift optimization by deriving the closed-form gradient of the sum-rate and the WMSE with respect to the RIS phase shift vector. Our simulations reveal that the proposed rate maximization technique, rooted in the WMMSE algorithm, exhibits superior performance when compared to other benchmarks. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10598716
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Communications
- Volume:
- 72
- Issue:
- 8
- ISSN:
- 0090-6778
- Page Range / eLocation ID:
- 5194 to 5208
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Due to the simultaneous downlink and uplink transmissions in reconfigurable intelligent surface (RIS)-empowered frequency division duplexing (FDD) communication systems, it is necessary to design the RIS phase shifts to balance the performance of both directions at the same time. Focusing on a single-user multiple-input multiple-output system, we aim to maximize a weighted sum-rate for the downlink and uplink. To address the resulting non-convex optimization problem, we employ an alternating optimization (AO) algorithm, which includes two techniques for optimizing the phase shifts at the RIS. A manifold optimization-based algorithm is applied for the first technique, and a lower-complexity AO approach is developed for the second. Our numerical results demonstrate that the proposed algorithms lead to substantial enhancement of the entire system compared to existing baseline schemes.more » « less
- 
            Reconfigurable intelligent surface (RIS) technology can enhance the performance of wireless systems, but an ad-versary can use such technology to deteriorate communication links. This paper explores an RIS-based attack on multi-user wireless systems that require channel reciprocity for time-division duplexing (TDD). We demonstrate that deploying an RIS with a non-diagonal phase shift matrix can compromise channel reciprocity and lead to poor TDD performance. The attack can be achieved without transmission of signal energy, without channel state information (CSI), and without synchronization with the legitimate system, and thus it is difficult to detect and counteract. We provide an extensive set of simulation studies on the impact of such an attack on the achievable sum rate of the legitimate system, and we design a heuristic algorithm for optimizing the attack in cases where some partial knowledge of the CSI is available. Our results demonstrate that this channel reciprocity attack can significantly degrade the performance of the legitimate system.more » « less
- 
            This paper investigates reconfigurable intelligent surface (RIS)-assisted secure multiuser communication systems in the presence of hardware impairments (HIs) at the RIS and the transceivers. We jointly optimize the beamforming vectors at the base station (BS) and the phase shifts of the reflecting elements at the RIS so as to maximize the weighted minimum approximate ergodic secrecy rate (WMAESR), subject to the transmission power constraints at the BS and unit-modulus constraints at the RIS. To solve the formulated optimization problem, we first decouple it into two tractable subproblems and then use the block coordinate descent (BCD) method to alternately optimize the subproblems. Two different methods are proposed to solve the two obtained subproblems. The first method transforms each subproblem into a second order cone programming (SOCP) problem by invoking the penalty convex–concave procedure (CCP) method and the closed-form fractional programming (FP) criterion, and then directly solves them by using CVX. The second method leverages the minorization-maximization (MM) algorithm. Specifically, we first derive a concave approximation function, which is a lower bound of the original objective function, and then the two subproblems are transformed into two simple surrogate problems that admit closed-form solutions. Simulation results verify the performance gains of the proposed robust transmission methods over existing non-robust designs. In addition, the MM algorithm is shown to have much lower complexity than the SOCP-based algorithm.more » « less
- 
            Joint device-to-device (D2D) and cellular communication is a promising technology for enhancing the spectral efficiency of future wireless networks. However, the interference management problem is challenging since the operating devices and the cellular users share the same spectrum. The emerging reconfigurable intelligent surfaces (RIS) technology is a potentially ideal solution for this interference problem since RISs can shape the wireless channel in desired ways. This paper considers an RIS-aided joint D2D and cellular communication system where the RIS is exploited to cancel interference to the D2D links and maximize the minimum signal-to-interference plus noise (SINR) of the device pairs and cellular users. First, we adopt a popular alternating optimization (AO) approach to solve the minimum SINR maximization problem. Then, we propose an interference cancellation (IC)-based approach whose complexity is much lower than that of the AO algorithm. We derive a representation for the RIS phase shift vector which cancels the interference to the D2D links. Based on this representation, the RIS phase shift optimization problem is transformed into an effective D2D channel optimization. We show that the AO approach can converge faster and can even give better performance when it is initialized by the proposed IC solution. We also show that for the case of a single D2D pair, the proposed IC approach can be implemented with limited feedback from the single receive device.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    