skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Picture of the Space of Typical Learnable Tasks
We develop information geometric techniques to understand the representations learned by deep networks when they are trained on different tasks using supervised, meta-, semi-supervised and con- trastive learning. We shed light on the following phenomena that relate to the structure of the space of tasks: (1) the manifold of probabilistic models trained on different tasks using different represen- tation learning methods is effectively low-dimen- sional; (2) supervised learning on one task results in a surprising amount of progress even on seem- ingly dissimilar tasks; progress on other tasks is larger if the training task has diverse classes; (3) the structure of the space of tasks indicated by our analysis is consistent with parts of the Word- net phylogenetic tree; (4) episodic meta-learning algorithms and supervised learning traverse differ- ent trajectories during training but they fit similar models eventually; (5) contrastive and semi-su- pervised learning methods traverse trajectories similar to those of supervised learning. We use classification tasks constructed from the CIFAR- 10 and Imagenet datasets to study these phenom- ena. Code is available at https://github.com/grasp- lyrl/picture of space of tasks.  more » « less
Award ID(s):
1753357
PAR ID:
10598852
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Proceedings of the 40th International Conference on Machine Learning
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Few-shot classification (FSC) requires training models using a few (typically one to five) data points per class. Meta learning has proven to be able to learn a parametrized model for FSC by training on various other classification tasks. In this work, we propose PLATINUM (semi-suPervised modeL Agnostic meTa-learnIng usiNg sUbmodular Mutual information), a novel semi-supervised model agnostic meta-learning framework that uses the submodular mutual information (SMI) functions to boost the performance of FSC. PLATINUM leverages unlabeled data in the inner and outer loop using SMI functions during meta-training and obtains richer meta-learned parameterizations for meta-test. We study the performance of PLATINUM in two scenarios - 1) where the unlabeled data points belong to the same set of classes as the labeled set of a certain episode, and 2) where there exist out-of-distribution classes that do not belong to the labeled set. We evaluate our method on various settings on the miniImageNet, tieredImageNet and Fewshot-CIFAR100 datasets. Our experiments show that PLATINUM outperforms MAML and semi-supervised approaches like pseduo-labeling for semi-supervised FSC, especially for small ratio of labeled examples per class. 
    more » « less
  2. Chaudhuri, Kamalika; Jegelka, Stefanie; Song, Le; Szepesyari, Csaba; Niu, Gang; Sabato, Sivan (Ed.)
    Few-shot classification (FSC) requires training models using a few (typically one to five) data points per class. Meta-learning has proven to be able to learn a parametrized model for FSC by training on various other classification tasks. In this work, we propose PLATINUM (semi-suPervised modeL Agnostic meTa learnIng usiNg sUbmodular Mutual information ), a novel semi-supervised model agnostic meta learning framework that uses the submodular mutual in- formation (SMI) functions to boost the perfor- mance of FSC. PLATINUM leverages unlabeled data in the inner and outer loop using SMI func- tions during meta-training and obtains richer meta- learned parameterizations. We study the per- formance of PLATINUM in two scenarios - 1) where the unlabeled data points belong to the same set of classes as the labeled set of a cer- tain episode, and 2) where there exist out-of- distribution classes that do not belong to the la- beled set. We evaluate our method on various settings on the miniImageNet, tieredImageNet and CIFAR-FS datasets. Our experiments show that PLATINUM outperforms MAML and semi- supervised approaches like pseduo-labeling for semi-supervised FSC, especially for small ratio of labeled to unlabeled samples. 
    more » « less
  3. Meta-learning methods typically learn tasks under the assumption that all tasks are equally important. However, this assumption is often not valid. In real-world applications, tasks can vary both in their importance during different train- ing stages and in whether they contain noisy labeled data or not, making a uniform approach suboptimal. To address these issues, we propose the Data-Efficient and Robust Task Selection (DERTS) algorithm, which can be incorporated into both gradient and metric-based meta-learning algo- rithms. DERTS selects weighted subsets of tasks from task pools by minimizing the approximation error of the full gra- dient of task pools in the meta-training stage. The selected tasks are efficient for rapid training and robust towards noisy label scenarios. Unlike existing algorithms, DERTS does not require any architecture modification for training and can handle noisy label data in both the support and query sets. Analysis of DERTS shows that the algorithm follows similar training dynamics as learning on the full task pools. Experiments show that DERTS outperforms existing sam- pling strategies for meta-learning on both gradient-based and metric-based meta-learning algorithms in limited data budget and noisy task settings. 
    more » « less
  4. null (Ed.)
    Recent years have witnessed the enormous success of text representation learning in a wide range of text mining tasks. Earlier word embedding learning approaches represent words as fixed low-dimensional vectors to capture their semantics. The word embeddings so learned are used as the input features of task-specific models. Recently, pre-trained language models (PLMs), which learn universal language representations via pre-training Transformer-based neural models on large-scale text corpora, have revolutionized the natural language processing (NLP) field. Such pre-trained representations encode generic linguistic features that can be transferred to almost any text-related applications. PLMs outperform previous task-specific models in many applications as they only need to be fine-tuned on the target corpus instead of being trained from scratch. In this tutorial, we introduce recent advances in pre-trained text embeddings and language models, as well as their applications to a wide range of text mining tasks. Specifically, we first overview a set of recently developed self-supervised and weakly-supervised text embedding methods and pre-trained language models that serve as the fundamentals for downstream tasks. We then present several new methods based on pre-trained text embeddings and language models for various text mining applications such as topic discovery and text classification. We focus on methods that are weakly-supervised, domain-independent, language-agnostic, effective and scalable for mining and discovering structured knowledge from large-scale text corpora. Finally, we demonstrate with real world datasets how pre-trained text representations help mitigate the human annotation burden and facilitate automatic, accurate and efficient text analyses. 
    more » « less
  5. Motivated by concerns surrounding the fairness effects of sharing and transferring fair machine learning tools, we propose two algorithms: Fairness Warnings and Fair-MAML. The first is a model-agnostic algorithm that provides interpretable boundary conditions for when a fairly trained model may not behave fairly on similar but slightly different tasks within a given domain. The second is a fair meta-learning approach to train models that can be quickly fine-tuned to specific tasks from only a few number of sample instances while balancing fairness and accuracy. We demonstrate experimentally the individual utility of each model using relevant baselines and provide the first experiment to our knowledge of K-shot fairness, i.e. training a fair model on a new task with only K data points. Then, we illustrate the usefulness of both algorithms as a combined method for training models from a few data points on new tasks while using Fairness Warnings as interpretable boundary conditions under which the newly trained model may not be fair. 
    more » « less