skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 14, 2026

Title: Scalable Electrochemical Detection and Degradation of 1,4-Dioxane in Water and Wastewater: A Core–Shell Bimetallic Nanocatalyst and Simulation Study
We hereby report the synthesis, characterization, and computational analysis of novel bimetallic PdRu nanoparticles (PdRuNPs) using the quercetin-para aminobenzoic acid (QPABA) ligand and their application in developing a sensitive and scalable electrochemical system for effective detection and degradation of 1,4-dioxane in water samples. The fabricated nanocatalysts were subjected to UV–visible spectroscopy, particle size analyzer, XRD, SEM, STEM–EDX, TEM, and FTIR. Also, the DFT B3LYP computational study shows that stable PdRuNPs form through Pd and Ru interactions with QPABA at the carboxyl OH sites on the G and F rings, respectively. The limit of detection for 1,4-dioxane was determined to be 0.034 ppb, which is below the U.S. Environmental Protection Agency’s advisory range. Additionally, combining liquid–liquid extraction with GC–MS for the detection of 1,4-dioxane registered a method detection limit of 0.033 ppb in real wastewater samples. In the scaled-up system, three actual wastewaters from a wastewater treatment plant in New Jersey containing 1,4-dioxane up to 300 ppm were able to be 100% removed within 30 min. In addition, LC–MS analysis revealed the final reduction of 1,4-dioxane to carbon dioxide and water. This study provides a reliable method for the scalable and simultaneous detection and degradation of hazardous chemicals, enhancing the environmental safety.  more » « less
Award ID(s):
2150363
PAR ID:
10599023
Author(s) / Creator(s):
; ; ;
Corporate Creator(s):
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
ACS ES&T Water
Volume:
5
Issue:
3
ISSN:
2690-0637
Page Range / eLocation ID:
1158 to 1172
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Detection of illicit drug residues from wastewater provides a new route toward community-level assessment of drug abuse that is critical to public health. However, traditional chemistry analytical tools such as high-performance liquid chromatography in tandem with mass spectrometry (HPLC-MS) cannot meet the large-scale testing requirement in terms of cost, promptness, and convenience of use. In this article, we demonstrated ultra-sensitive and portable surface-enhanced Raman scattering sensing (SERS) of fentanyl, a synthetic opioid, from sewage water and achieved quantitative analysis through principal component analysis and partial least-squares regression. The SERS substrates adopted in this application were synthesized by in situ growth of silver nanoparticles on diatomaceous earth films, which show ultra-high sensitivity down to 10 parts per trillion in artificially contaminated tap water in the lab using a commercial portable Raman spectrometer. Based on training data from artificially contaminated tap water, we predicted the fentanyl concentration in the sewage water from a wastewater treatment plant to be 0.8 parts per billion (ppb). As a comparison, the HPLC-MS confirmed the fentanyl concentration was below 1 ppb but failed to provide a specific value of the concentration since the concentration was too low. In addition, we further proved the validity of our SERS sensing technique by comparing SERS results from multiple sewage water treatment plants, and the results are consistent with the public health data from our local health authority. Such SERS sensing technique with ultra-high sensitivity down to sub-ppb level proved its feasibility for point-of-care detection of illicit drugs from sewage water, which is crucial to assess public health. 
    more » « less
  2. Cometabolic bioremediation is trending for the treatment of 1,4-dioxane (dioxane) and other emerging contaminants to meet stringent regulatory goals ( e.g. , <10 μg L −1 ) since biodegradation activities can be fueled by the supplementation of auxiliary substrates. In this study, we compared and investigated the effectiveness of two types of common auxiliary substrates, short-chain alkane gases ( e.g. , propane and butane) and primary alcohols ( e.g. , 1-propanol, 1-butanol, and ethanol), for dioxane removal in diverse environmental matrices with Azoarcus sp. DD4 as the inoculum. Physicochemical characterization at the pure culture level revealed that propane and 1-propanol are advantageous for stimulating cell growth and dioxane biodegradation by DD4. Parallel microcosm assays were conducted to assess the compatibility of DD4 bioaugmentation in diverse microbiomes recovered from five different environmental samples, including shallow and deep aquifer groundwater, contaminated river sediment, and municipal activated sludge. Propane was effective in sustaining efficient dioxane removal and the dominance of DD4 across all environmental matrices. Notably, amendment with 1-propanol promoted superior dioxane degradation in the deep aquifer groundwater, in which low pre-treatment biomass and post-treatment diversity were observed, suggesting its potential for intrinsic field applications. The combination of microbial community analysis and differential ranking identified that Ochrobactrum and several other indigenous bacteria were boosted by the inoculation of DD4, implying their commensal or mutualistic relationship. Collectively, propane and 1-propanol can be effective auxiliary substrate alternatives tailored for in situ bioaugmentation and their effectiveness is affected by the density and structure of environmental microbiomes. 
    more » « less
  3. Rapid and cost-effective detection of antibiotics in wastewater and through wastewater treatment processes is an important first step in developing effective strategies for their removal. Surface-enhanced Raman scattering (SERS) has the potential for label-free, real-time sensing of antibiotic contamination in the environment. This study reports the testing of two gold nanostructures as SERS substrates for the label-free detection of quinoline, a small-molecular-weight antibiotic that is commonly found in wastewater. The results showed that the self-assembled SERS substrate was able to quantify quinoline spiked in wastewater with a lower limit of detection (LoD) of 5.01 ppb. The SERStrate (commercially available SERS substrate with gold nanopillars) had a similar sensitivity for quinoline quantification in pure water (LoD of 1.15 ppb) but did not perform well for quinoline quantification in wastewater (LoD of 97.5 ppm) due to interferences from non-target molecules in the wastewater. Models constructed based on machine learning algorithms could improve the separation and identification of quinoline Raman spectra from those of interference molecules to some degree, but the selectivity of SERS intensification was more critical to achieve the identification and quantification of the target analyte. The results of this study are a proof-of-concept for SERS applications in label-free sensing of environmental contaminants. Further research is warranted to transform the concept into a practical technology for environmental monitoring. 
    more » « less
  4. Cometabolic degradation plays a prominent role in bioremediation of commingled groundwater contamination (e.g., chlorinated solvents and the solvent stabilizer 1,4-dioxane [dioxane]). In this study, we untangled the diversity and catalytic functions of multi-component monooxygenases in Azoarcus sp. DD4, a gram-negative propanotroph that is effective in degrading dioxane and 1,1-dichloroethylene (1,1-DCE). Using a combination of knockout mutagenesis and heterologous expression, a toluene monooxygenase (MO) encoded by the tmoABCDEF gene cluster was unequivocally proved as the key enzyme responsible for the cometabolism of both dioxane and 1,1-DCE. Interestingly, in addition to utilizing toluene as a primary substrate, this toluene MO can also oxidize propane into 1-propanol. Expression of this toluene MO in DD4 appears inducible by both substrates (toluene and propane) and their primary hydroxylation products (m-cresol, p-cresol, and 1-propanol). These findings coherently explain why DD4 can grow on propane and express toluene MO for active co-oxidation of dioxane and 1,1-DCE. Furthermore, upregulation of tmo transcription by 1-propanol underlines the implication potential of using 1-propanol as an alternative auxiliary substrate for DD4 bioaugmentation. The discovery of this toluene MO in DD4 and its degradation and induction versatility renders broad applications spanning from environmental remediation and water treatment to biocatalysis in green chemistry. Importance Toluene MOs have been well recognized given their robust abilities to degrade a variety of environmental pollutants. Built upon previous research efforts, this study ascertained the untapped capability of a toluene MO in DD4 for effective co-oxidation of dioxane and 1,1-DCE, two of the most prevailing yet challenging groundwater contaminants. This report also aligns the induction of a toluene MO with non-toxic and commercially accessible chemicals (e.g., propane and 1-propanol), extending its implication values in the field of environmental microbiology and beyond. 
    more » « less
  5. Ferrate is a promising, emerging water treatment technology. However, there has been limited research on the application of ferrate in a water reuse paradigm. Recent literature has shown that ferrate oxidation of target contaminants could be improved by “activation” with the addition of reductants or acid. This study examined the impact of sulfite-activated ferrate in laboratory water matrix and spiked municipal wastewater effluents with the goal of transforming organic contaminants of concern (e.g., 1,4-dioxane) and inactivating pathogenic organisms. Additionally, the formation of brominated disinfection byproducts by activated ferrate were examined and a proposed reaction pathway for byproduct formation is presented. In particular, the relative importance of reaction intermediates is discussed. This represents the first activated ferrate study to examine 1,4-dioxane transformation, disinfection, and brominated byproduct formation. Results presented show that the sub-stoichiometric ([Sulfite]:[Ferrate] = 0.5) activated ferrate treatment approach can oxidize recalcitrant contaminants by >50%, achieve >4-log inactivation of pathogens, and have relatively limited generation of brominated byproducts. However, stoichiometrically excessive ([Sulfite]:[Ferrate] = 4.0) activation showed decreased performance with decreased disinfection and increased risk of by-product formation. In general, our results indicate that sub-stoichiometric sulfite-activated ferrate seems a viable alternative technology for various modes of water reuse treatment. 
    more » « less