skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Plasma Concentrations of High Mobility Group Box 1 Proteins and Soluble Receptors for Advanced Glycation End-Products Are Relevant Biomarkers of Cognitive Impairment in Alcohol Use Disorder: A Pilot Study
Alcohol use disorder (AUD) is a major component in the etiology of cognitive decline and dementia. Underlying mechanisms by which long-term alcohol abuse causes cognitive dysfunction include excessive oxidative stress and inflammation in the brain, activated by increased reactive oxygen/nitrogen species (ROS/RNS), advanced glycation end-products (AGEs) and high-mobility group box 1 protein (HMGB1). In a pilot study, we examine the potential clinical value of circulating biomarkers of oxidative stress including ROS/RNS, HMGB1, the soluble receptor for AGE (sRAGE), the brain biomarker of aging apolipoprotein D (ApoD), and the antioxidant regulator nuclear factor erythroid 2-related factor 2 (NRF2) as predictive indices for cognitive impairment (CI) in abstinent patients with AUD (n = 25) compared to patients with established Alzheimer’s disease (AD, n = 26) and control subjects (n = 25). Plasma concentrations of sRAGE were evaluated with immunoblotting; ROS/RNS with a fluorometric kit; and HMGB1, ApoD, and NRF2 by ELISA. Abstinent AUD patients had higher sRAGE, ROS/RNS (p < 0.05), and ApoD (p < 0.01) concentrations, similar to those of AD patients, and lower NRF2 (p < 0.01) concentrations, compared to controls. These changes were remarkable in AUD patients with CI. HMGB1, and sRAGE correlated positively with duration of alcohol use (rho = 0.398, p = 0.022; rho = 0.404, p = 0.018), whereas sRAGE correlated negatively with periods of alcohol abstinence (rho = −0.340, p = 0.045). A predictive model including ROS/RNS, HMGB1, sRAGE, alcohol use duration, and alcohol abstinence periods was able to differentiate AUD patients with CI (92.3% of correct predictions, ROC-AUC= 0.90) from those without CI. In conclusion, we propose ROS/RNS, HMGB1, and sRAGE as stress biomarkers capable of predicting cognitive impairment in AUD patients.  more » « less
Award ID(s):
2150363
PAR ID:
10599030
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Corporate Creator(s):
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Toxics
Volume:
12
Issue:
3
ISSN:
2305-6304
Page Range / eLocation ID:
190
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background and Objectives The goal of this work was to determine the relationship between diffusion microstructure and early changes in Alzheimer disease (AD) severity as assessed by clinical diagnosis, cognitive performance, dementia severity, and plasma concentrations of neurofilament light chain. Methods Diffusion MRI scans were collected on cognitively normal participants (CN) and patients with early mild cognitive impairment (EMCI), late mild cognitive impairment, and AD. Free water (FW) and FW-corrected fractional anisotropy were calculated in the locus coeruleus to transentorhinal cortex tract, 4 magnocellular regions of the basal forebrain (e.g., nucleus basalis of Meynert), entorhinal cortex, and hippocampus. All patients underwent a battery of cognitive assessments; neurofilament light chain levels were measured in plasma samples. Results FW was significantly higher in patients with EMCI compared to CN in the locus coeruleus to transentorhinal cortex tract, nucleus basalis of Meynert, and hippocampus (mean Cohen d = 0.54; p fdr < 0.05). FW was significantly higher in those with AD compared to CN in all the examined regions (mean Cohen d = 1.41; p fdr < 0.01). In addition, FW in the hippocampus, entorhinal cortex, nucleus basalis of Meynert, and locus coeruleus to transentorhinal cortex tract positively correlated with all 5 cognitive impairment metrics and neurofilament light chain levels (mean r 2 = 0.10; p fdr < 0.05). Discussion These results show that higher FW is associated with greater clinical diagnosis severity, cognitive impairment, and neurofilament light chain. They also suggest that FW elevation occurs in the locus coeruleus to transentorhinal cortex tract, nucleus basalis of Meynert, and hippocampus in the transition from CN to EMCI, while other basal forebrain regions and the entorhinal cortex are not affected until a later stage of AD. FW is a clinically relevant and noninvasive early marker of structural changes related to cognitive impairment. 
    more » « less
  2. Abstract It has become consensus that mild cognitive impairment (MCI), one of the early symptoms onset of Alzheimer’s disease (AD), may appear 10 or more years after the emergence of neuropathological abnormalities. Therefore, understanding the progression of AD biomarkers and uncovering when brain alterations begin in the preclinical stage, while patients are still cognitively normal, are crucial for effective early detection and therapeutic development. In this paper, we develop a Bayesian semiparametric framework that jointly models the longitudinal trajectory of the AD biomarker with a changepoint relative to the occurrence of symptoms onset, which is subject to left truncation and right censoring, in a heterogeneous population. Furthermore, unlike most existing methods assuming that everyone in the considered population will eventually develop the disease, our approach accounts for the possibility that some individuals may never experience MCI or AD, even after a long follow-up time. We evaluate the proposed model through simulation studies and demonstrate its clinical utility by examining an important AD biomarker, ptau181, using a dataset from the Biomarkers of Cognitive Decline Among Normal Individuals (BIOCARD) study. 
    more » « less
  3. INTRODUCTION: It is unclear whether aggregated plasma protein risk scores (PPRS) could be useful to predict the risks of mild cognitive impairment (MCI) and Alzheimer’s disease (AD). METHODS: The Cox proportional hazard model with the LASSO penalty was used to build the PPRS for MCI and AD in 1,515 Framingham Heart Study Generation2 with 1,128 proteins measured in plasma at exam 5 [cognitive normal (CN)=1,258, MCI=129, AD=128]. RESULTS: MCI PPRS had a hazard ratio (HR) of 6.97[5.34,9.12], with a discriminating power (C-index=82.52%). AD PPRS had an HR of 5.74[4.67,7.05] (C-index=88.15%). Both PPRSs were also significantly associated with cognitive changes, brain-atrophy, and plasma AD biomarkers. Proteins in the MCI and AD PPRSs were enriched in several pathways related to leukocyte, chemotaxis, immunity, inflammation, and cellular migration. DISCUSSION: This study suggests that PPRS serve well to predict the risk of developing MCI and AD as well as cognitive changes and AD related pathogenesis in the brain. 
    more » « less
  4. Neuroimaging and biofluid biomarkers provide a proxy of pathological changes for Alzheimer’s disease (AD) and are useful in improving diagnosis and assessing disease progression. However, it is not clear how race/ethnicity and different prevalence of AD risks impact biomarker levels. In this narrative review, we survey studies focusing on comparing biomarker differences between non-Hispanic White American(s) (NHW), African American(s) (AA), Hispanic/Latino American(s) (HLA), and Asian American(s) with normal cognition, mild cognitive impairment, and dementia. We found no strong evidence of racial and ethnic differences in imaging biomarkers after controlling for cognitive status and cardiovascular risks. For biofluid biomarkers, in AA, higher levels of plasma Aβ42/Aβ40, and lower levels of CSF total tau and p-tau 181, were observed after controlling for APOE status and comorbidities compared to NHW. Examining the impact of AD risks and comorbidities on biomarkers and their contributions to racial/ethnic differences in cognitive impairment are critical to interpreting biomarkers, understanding their generalizability, and eliminating racial/ethnic health disparities. 
    more » « less
  5. Electrochemical sensors are ideally suited for the detection of reactive oxygen and nitrogen species (ROS and RNS) generated during biological processes. This review discusses the latest work in the development of electrochemical microsensors for ROS/RNS and their possible applications for monitoring oxidative stress in biological systems. The performance of recent designs of microelectrodes and electrode materials are discussed along with their functionality in preclinical models of drug efficacy, mitochondrial distress, and endothelial dysfunction. Challenges and opportunities in translating this methodology to study the pathophysiology associated with various diseases are discussed. 
    more » « less