We propose and analyze deterministic protocols to generate qudit photonic graph states from quantum emitters. We show that our approach can be applied to generate any qudit graph state and we exemplify it by constructing protocols to generate one- and two-dimensional qudit cluster states, absolutely maximally entangled states, and logical states of quantum error-correcting codes. Some of these protocols make use of time-delayed feedback, while others do not. The only additional resource requirement compared to the qubit case is the ability to control multilevel emitters. These results significantly broaden the range of multiphoton entangled states that can be produced deterministically from quantum emitters. Published by the American Physical Society2024
more »
« less
This content will become publicly available on February 5, 2026
High-Dimensional Quantum Key Distribution by a Spin-Orbit Microlaser
Quantum key distribution offers a promising avenue for establishing secure communication networks. However, its performance is significantly hampered by the conventional two-level information carriers (i.e., qubits) due to their limited information capacity and noise resilience. A fundamental approach to overcoming these limitations involves the adoption of high-dimensional qudits. Practical qudit platforms require robust propagation, outstanding controllability, and extreme compactness, to which integrated photonics provides a promising solution. Here, we achieved, for the first time, microlaser-enabled high-dimensional quantum communication through leveraging spin-orbit photon qudits, where the dynamical generation and manipulation of these multi-degrees-of-freedom complex quantum state are realized by a non-Hermitian-physics-driven integrated microlaser quantum transmitter. Such a microlaser photon manipulation, as a novel route towards high-dimensional quantum state generation, promises high energy efficiency, along with fast, compact, and precise qudit state reconfigurability. The four spin-orbit eigenstates emitted by the microlaser possess the same spatial-temporal structures, ensuring homogeneity between all qudit states used for key distribution, which effectively eliminates propagation dephasing and walk-off problems, thereby delivering the high-dimensional spin-orbit secret key generation to construct a robust quantum link. The demonstrated long-term system stability showcases the practical potential of the microlaser quantum transmitter, providing a critical step towards compact, high-information-capacity quantum communication networks. Published by the American Physical Society2025
more »
« less
- Award ID(s):
- 1846766
- PAR ID:
- 10599048
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review X
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2160-3308
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The hope for a futuristic global quantum internet that provides robust and high-capacity quantum information transfer lies largely on qudits, the fundamental quantum information carriers prepared in high-dimensional superposition states. However, preparing and manipulating N-dimensional flying qudits as well as subsequently establishing their entanglement are still challenging tasks, which require precise and simultaneous maneuver of 2 (N-1) parameters across multiple degrees of freedom. Here, using an integrated approach, we explore the synergy from two degrees of freedom of light, spatial mode and polarization, to generate, encode, and manipulate flying structured photons and their formed qudits in a four-dimensional Hilbert space with high quantum fidelity, intrinsically enabling enhanced noise resilience and higher quantum data rates. The four eigen spin–orbit modes of our qudits possess identical spatial–temporal characteristics in terms of intensity distribution and group velocity, thereby preserving long-haul coherence within the entirety of the quantum data transmission link. Judiciously leveraging the bi-photon entanglement, which is well preserved in the integrated manipulation process, we present versatile spin–orbit cluster states in an extensive dimensional Hilbert space. Such cluster states hold the promise for quantum error correction which can further bolster the channel robustness in long-range quantum communication.more » « less
-
We investigate the collective non-Markovian dynamics of two fully excited two-level atoms coupled to a one-dimensional waveguide in the presence of delay. We demonstrate that analogous to the well-known superfluorescence phenomena, where an inverted atomic ensemble synchronizes to enhance its emission, there is a “subfluorescence” effect that synchronizes the atoms into an entangled dark state depending on the interatomic separation. The phenomenon can lead to a two-photon bound state in the continuum. Our results are pertinent to long-distance quantum networks, presenting a mechanism for spontaneous entanglement generation between distant quantum emitters. Published by the American Physical Society2024more » « less
-
Chirality, or handedness, is a geometrical property denoting a lack of mirror symmetry. Chirality is ubiquitous in nature and is associated with the nonreciprocal interactions observed in complex systems ranging from biomolecules to topological materials. Here, we demonstrate that chiral arrangements of dipole-coupled atoms or molecules can facilitate the helicity-dependent superradiant emission of light. We show that the collective modes of these systems experience an emergent spin-orbit coupling that leads to chirality-dependent photon transport and nontrivial topological properties. These phenomena are fully described within the electric dipole approximation, resulting in very strong optical responses. Our results demonstrate an intimate connection between chirality, superradiance, and photon helicity and provide a comprehensive framework for studying electron transport dynamics in chiral molecules using cold atom quantum simulators. Published by the American Physical Society2024more » « less
-
Quantum memory devices with high storage efficiency and bandwidth are essential elements for future quantum networks. Solid-state quantum memories can provide broadband storage, but they primarily suffer from low storage efficiency. We use passive optimization and algorithmic optimization techniques to demonstrate nearly a sixfold enhancement in quantum memory efficiency. In this regime, we demonstrate coherent and single-photon-level storage with a high signal-to-noise ratio. The optimization technique presented here can be applied to most solid-state quantum memories to significantly improve the storage efficiency without compromising the memory bandwidth. Published by the American Physical Society2024more » « less
An official website of the United States government
