skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: HelioCubed: A High Order Inner Heliosphere Simulation Code with a Mapped Cubed Sphere Grid and Adaptive Mesh Refinement
Abstract We present the HelioCubed, a high-order magnetohydrodynamic (MHD) code designed for modeling the inner heliosphere. The code is designed to achieve 4th order accuracy both in space and in time. In addition, HelioCubed can perform simulations on mapped grids, such as those based on cubed spheres, which makes it possible to overcome stability limitations caused by the geometrical singularity at the polar axis of a spherical grid, thus enabling substantially larger time steps. HelioCubed has been developed using the high-level Proto library, ensures performance portability across CPU and GPU architectures, and supports back-end implementations, e.g., CUDA, HIP, OpenMP, and MPI. The code is compatible with the HDF5 library, which facilitates seamless data handling for simulations and boundary conditions derived from semi-empirical and MHD models of the solar corona. While presenting the results of preliminary simulations, we demonstrate that our simulations are indeed performed with 4th order of accuracy. Our approach ensures that HelioCubed solves the MHD equations preserving the radial flow to machine round-off error even on cubed-sphere grids. Solar wind simulations are performed using the boundary conditions provided by the Wang–Sheeley–Arge coronal model of the ambient solar wind. It also allows us to to simulate coronal mass ejections using observation-driven flux rope models. These capabilities make HelioCubed a versatile and powerful tool to advance heliophysics research and space weather forecasting.  more » « less
Award ID(s):
2028154
PAR ID:
10599055
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP
Date Published:
Journal Name:
Journal of Physics: Conference Series
Volume:
2997
Issue:
1
ISSN:
1742-6588
Page Range / eLocation ID:
012019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract To address Objective II of the National Space Weather Strategy and Action Plan “Develop and Disseminate Accurate and Timely Space Weather Characterization and Forecasts” and US Congress PROSWIFT Act 116–181, our team is developing a new set of open-source software that would ensure substantial improvements of Space Weather (SWx) predictions. On the one hand, our focus is on the development of data-driven solar wind models. On the other hand, each individual component of our software is designed to have accuracy higher than any existing SWx prediction tools with a dramatically improved performance. This is done by the application of new computational technologies and enhanced data sources. The development of such software paves way for improved SWx predictions accompanied with an appropriate uncertainty quantification. This makes it possible to forecast hazardous SWx effects on the space-borne and ground-based technological systems, and on human health. Our models include (1) a new, open-source solar magnetic flux model (OFT), which evolves information to the back side of the Sun and its poles, and updates the model flux with new observations using data assimilation methods; (2) a new potential field solver (POT3D) associated with the Wang–Sheeley–Arge coronal model, and (3) a new adaptive, 4-th order of accuracy solver (HelioCubed) for the Reynolds-averaged MHD equations implemented on mapped multiblock grids (cubed spheres). We describe the software and results obtained with it, including the application of machine learning to modeling coronal mass ejections, which makes it possible to improve SWx predictions by decreasing the time-of-arrival mismatch. The tests show that our software is formally more accurate and performs much faster than its predecessors used for SWx predictions. 
    more » « less
  2. The Sun emits a stream of charged particles called the solar wind, which is the primary driver of space weather and geomagnetic disturbances. Modeling and observations complement each other to help us identify and understand the physical processes governing the solar wind dynamics on different scales. Numerical models of the solar wind have greatly improved in recent years with advances in computational infrastructure and by employing data-driven or data-assimilative approaches. Designed primarily for modeling the partially ionized space plasma using adaptive mesh refinement technique on Cartesian or spherical grids, the Multi-scale Fluid-kinetic Simulation Suite (MS-FLUKSS) is arguably one of the most sophisticated numerical codes for simulating the solar wind flow. To inform potential users and interested members of the space weather community, we present a brief summary of the current state of the solar wind models developed in the MS-FLUKSS framework, with an emphasis on the 3D heliospheric MHD models driven and constrained by remote/in situ observations and empirical coronal models such as the Wang-Sheeley-Arge model. We also discuss potential scientific and operational applications of our solar wind models on prediction of space weather (e.g., high speed streams, coronal mass ejections, and interplanetary shocks) throughout the solar system. 
    more » « less
  3. We present two major improvements over the Compressible High-ORder Unstructured Spectral difference (CHORUS) code published in Wang et al., “A compressible high-order unstructured spectral difference code for stratified convection in rotating spherical shells,” J. Comput. Phys. 290, 90–111 (2015). The new code is named CHORUS++ in this paper. Subsequently, we perform a series of efficient simulations for rotationally constrained convection (RCC) in spherical shells. The first improvement lies in the integration of the high-order spectral difference method with a boundary-conforming transfinite mapping on cubed-sphere grids, thus ensuring exact geometric representations of spherical surfaces on arbitrary sparse grids. The second improvement is on the adoption of higher-order elements (sixth-order) in CHORUS++ vs third-order elements for the original CHORUS code. CHORUS++ enables high-fidelity RCC simulations using sixth-order elements on very coarse grids. To test the accuracy and efficiency of using elements of different orders, CHORUS++ is applied to a laminar solar benchmark, which is characterized by columnar banana-shaped convective cells. By fixing the total number of solution degrees of freedom, the computational cost per time step remains unchanged. Nevertheless, using higher-order elements in CHORUS++ resolves components of the radial energy flux much better than using third-order elements. To obtain converged predictions, using sixth-order elements is 8.7 times faster than using third-order elements. This significant speedup allows global-scale fully compressible RCC simulations to reach equilibration of the energy fluxes on a small cluster of just 40 cores. In contrast, CHORUS simulations were performed by Wang et al. on supercomputers using approximately 10 000 cores. Using sixth-order elements in CHORUS++, we further carry out global-scale solar convection simulations with decreased rotational velocities. Interconnected networks of downflow lanes emerge and surround broader and weaker regions of upflow fields. A strong inward kinetic energy flux compensated by an enhanced outward enthalpy flux appears. These observations are all consistent with those published in the literature. Furthermore, CHORUS++ can be extended to magnetohydrodynamic simulations with potential applications to the hydromagnetic dynamo processes in the interiors of stars and planets. 
    more » « less
  4. Numerical simulations have been an increasingly important tool in space physics. Here, we introduce an open-source three-dimensional compressible Hall-Magnetohydrodynamic (MHD) simulation codeLAPS(UCLA-Pseudo-Spectral,https://github.com/chenshihelio/LAPS). The code adopts a pseudo-spectral method based on Fourier Transform to evaluate spatial derivatives, and third-order explicit Runge-Kutta method for time advancement. It is parallelized using Message-Passing-Interface (MPI) with a “pencil” parallelization strategy and has very high scalability. The Expanding-Box-Model is implemented to incorporate spherical expansion effects of the solar wind. We carry out test simulations based on four classic (Hall)-MHD processes, namely, 1) incompressible Hall-MHD waves, 2) incompressible tearing mode instability, 3) Orszag-Tang vortex, and 4) parametric decay instability. The test results agree perfectly with theory predictions and results of previous studies. Given all its features,LAPSis a powerful tool for large-scale simulations of solar wind turbulence as well as other MHD and Hall-MHD processes happening in space. 
    more » « less
  5. The solar wind (SW) is a vital component of space weather, providing a background for solar transients such as coronal mass ejections, stream interaction regions, and energetic particles propagating toward Earth. Accurate prediction of space weather events requires a precise description and thorough understanding of physical processes occurring in the ambient SW plasma. Ensemble simulations of the three-dimensional SW flow are performed using an empirically-driven magnetohydrodynamic heliosphere model implemented in the Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS). The effect of uncertainties in the photospheric boundary conditions on the simulation outcome is investigated. The results are in good overall agreement with the observations from the Parker Solar Probe, Solar Orbiter, Solar Terrestrial Relations Observatory, and OMNI data at Earth, specifically during 2020-2021. This makes it possible to shed more light on the properties of the SW propagating through the heliosphere and perspectives for improving space weather forecasts. 
    more » « less