skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 16, 2026

Title: Spin Filtering with Surface-Active Helicene- and Twistacene-Based Perylene Diimides
Creating new chiral molecular and macromolecular systems that can polarize the spin of electrons has the dual promise of both applications in spintronics and a fundamental understanding of their origins. Here, we put forward two optically active helical ladder dimers from perylene diimide-based twistacenes and helicenes. We detail a scalable method to separate the helices for each of these systems and methods to functionalize them with thiol groups that allow for self-assembled monolayer formation on metal surfaces. We probed these monolayers with conductive atomic force microscopy, revealing that they are highly conductive. If the substrate is magnetized, then the current we measure with conductive atomic force microscopy is controlled by the handedness of the helices used to form the monolayers. Furthermore, helices of the same handedness for either the twistacene or helicene (right-handed helices vs left-handed helices) produce high (or low) currents in devices with the same magnetization. Importantly, we find a correlation between the magnetic field dependence of the conductivity and the helicity of the molecules, suggesting a link between these two properties, independent of the sign of their electronic circular dichroism.  more » « less
Award ID(s):
2304946
PAR ID:
10599115
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
ACS Publications, JACS
Date Published:
Journal Name:
Journal of the American Chemical Society
Volume:
147
Issue:
15
ISSN:
0002-7863
Page Range / eLocation ID:
12982 to 12988
Subject(s) / Keyword(s):
Circular dichroism spectroscopy Magnetic properties Molecules Oligomers Quantum mechanics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Chiral communications exist in secondary structures of foldamers and copolymers via a network of noncovalent interactions within effective intermolecular force (IMF) range. It is not known whether long-range chiral communication exists between macromolecular tertiary structures such as peptide coiled-coils beyond the IMF distance. Harnessing the high sensitivity of single-molecule force spectroscopy, we investigate the chiral interaction between covalently linked DNA duplexes and peptide coiled-coils by evaluating the binding of a diastereomeric pair of three DNA-peptide conjugates. We find that right-handed DNA triple helices well accommodate peptide triple coiled-coils of the same handedness, but not with the left-handed coiled-coil stereoisomers. This chiral communication is effective in a range (<4.5 nm) far beyond canonical IMF distance. Small-angle X-ray scattering and molecular dynamics simulation indicate that the interdomain linkers are tightly packed via hydrophobic interactions, which likely sustains the chirality transmission between DNA and peptide domains. Our findings establish that long-range chiral transmission occurs in tertiary macromolecular domains, explaining the presence of homochiral pairing of superhelices in proteins. 
    more » « less
  2. Abstract The intrinsic complexity of many mesoscale (10–100 nm) cellular machineries makes it challenging to elucidate their topological arrangement and transition dynamics. Here, we exploit DNA origami nanospring as a model system to demonstrate that tens of piconewton linear force can modulate higher-order conformation dynamics of mesoscale molecular assemblies. By switching between two chemical structures (i.e., duplex and tetraplex DNA) in the junctions of adjacent origami modules, the corresponding stretching or compressing chemo-mechanical stress reversibly flips the backbone orientations of the DNA nanosprings. Both coarse-grained molecular dynamics simulations and atomic force microscopy measurements reveal that such a backbone conformational switch does not alter the right-handed chirality of the nanospring helix. This result suggests that mesoscale helical handedness may be governed by the torque, rather than the achiral orientation, of nanospring backbones. It offers a topology-based caging/uncaging concept to present chemicals in response to environmental cues in solution. 
    more » « less
  3. Trinucleotide repeat (TNR) sequences widely exist in nature and their overgrowth is associated with two dozen neurodegenerative diseases in humans. These sequences have a unique helical flexibility, which affects their biophysical properties. A number of biophysical properties of these sequences have been studied in the past except their surface-tethered monolayers. To address the effect of sequence context and the associated helical flexibility on TNR monolayers, disease-relevant TNRs from three flexibility groups were surface-assembled on gold surfaces. The properties of the TNR films were studied, including charge transfer resistance ( R ct ) by electrochemical impedance spectroscopy (EIS), surface density by chronocoulometry (CC), surface topography by atomic force microscopy (AFM), and electrical conductivity by conducting atomic force microscopy (C-AFM). We found that the TNR film properties are characteristically sequence dependent rather than being dependent on their flexibility rank reported in the literature. The characteristic properties of TNR films studied here may be used for engineering label-free biosensors to detect neurological disorders and build DNA bioelectronics. 
    more » « less
  4. Abstract The range of possible morphologies for bent‐core B4 phase liquid crystals has recently expanded from helical nanofilaments (HNFs) and modulated HNFs to dual modulated HNFs, helical microfilaments, and heliconical‐layered nanocylinders. These new morphologies are observed when one or both aliphatic side chains contain a chiral center. Here, the following questions are addressed: which of these two chiral centers controls the handedness (helicity) and which morphology of the nanofilaments is formed by bent‐core liquid crystals with tris‐biphenyl diester core flanked by two chiral 2‐octyloxy side chains? The combined results reveal that the longer arm of these nonsymmetric bent‐core liquid crystals controls the handedness of the resulting dual modulated HNFs. These derivatives with opposite configuration of the two chiral side chains now feature twice as large dimensions compared to the homochiral derivatives with identical configuration. These results are supported by density functional theory calculations and stochastic dynamic atomistic simulations, which reveal that the relative difference between thepara‐ andmeta‐sides of the described series of compounds drives the variation in morphology. Finally, X‐ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) data also uncover the new morphology for B4 phases featuringp2/msymmetry within the filaments and less pronounced crystalline character. 
    more » « less
  5. Abstract The dielectric gap between the scanning probe microscopy (SPM) tip and the surface of a ferroelectric using conductive atomic force microscopy and piezoresponse force microscopy (PFM) is investigated. While the gap functions as a dielectric layer, it also allows tunneling current to inject charges into the ferroelectric when a critical loading force between 10–20 µN is applied to a tip with a radius of 25 nm under a bias voltage of 0.5 V. It is observed that the permittivity of the dielectric gap determines the coercive voltage measured by the piezoresponse hysteresis loop. While such studies done in air often produce coercive voltages much larger than those studied for the same materials in capacitor‐based studies, the use of high permittivity media such as water (ɛr= 79) or silicone oil (ɛr= 2.1‐2.8) produces coercive fields that more closely match those measured in conventional capacitor‐based polarization hysteresis loop measurements. Furthermore, using water as a dielectric medium in PFM imaging enhances the accuracy in extracting the amplitude and phase data from periodically poled lithium niobate crystals. These findings provide insight into the nanoscale phenomena of polarization switching instigated by the SPM tip and provide a pathway to improved quantitative studies. 
    more » « less