The advancements in data acquisition, storage, and processing techniques have resulted in the rapid growth of heterogeneous medical data. Integrating radiological scans, histopathology images, and molecular information with clinical data is essential for developing a holistic understanding of the disease and optimizing treatment. The need for integrating data from multiple sources is further pronounced in complex diseases such as cancer for enabling precision medicine and personalized treatments. This work proposes Multimodal Integration of Oncology Data System (MINDS)—a flexible, scalable, and cost-effective metadata framework for efficiently fusing disparate data from public sources such as the Cancer Research Data Commons (CRDC) into an interconnected, patient-centric framework. MINDS consolidates over 41,000 cases from across repositories while achieving a high compression ratio relative to the 3.78 PB source data size. It offers sub-5-s query response times for interactive exploration. MINDS offers an interface for exploring relationships across data types and building cohorts for developing large-scale multimodal machine learning models. By harmonizing multimodal data, MINDS aims to potentially empower researchers with greater analytical ability to uncover diagnostic and prognostic insights and enable evidence-based personalized care. MINDS tracks granular end-to-end data provenance, ensuring reproducibility and transparency. The cloud-native architecture of MINDS can handle exponential data growth in a secure, cost-optimized manner while ensuring substantial storage optimization, replication avoidance, and dynamic access capabilities. Auto-scaling, access controls, and other mechanisms guarantee pipelines’ scalability and security. MINDS overcomes the limitations of existing biomedical data silos via an interoperable metadata-driven approach that represents a pivotal step toward the future of oncology data integration.
more »
« less
Multimodal data integration for oncology in the era of deep neural networks: a review
Cancer research encompasses data across various scales, modalities, and resolutions, from screening and diagnostic imaging to digitized histopathology slides to various types of molecular data and clinical records. The integration of these diverse data types for personalized cancer care and predictive modeling holds the promise of enhancing the accuracy and reliability of cancer screening, diagnosis, and treatment. Traditional analytical methods, which often focus on isolated or unimodal information, fall short of capturing the complex and heterogeneous nature of cancer data. The advent of deep neural networks has spurred the development of sophisticated multimodal data fusion techniques capable of extracting and synthesizing information from disparate sources. Among these, Graph Neural Networks (GNNs) and Transformers have emerged as powerful tools for multimodal learning, demonstrating significant success. This review presents the foundational principles of multimodal learning including oncology data modalities, taxonomy of multimodal learning, and fusion strategies. We delve into the recent advancements in GNNs and Transformers for the fusion of multimodal data in oncology, spotlighting key studies and their pivotal findings. We discuss the unique challenges of multimodal learning, such as data heterogeneity and integration complexities, alongside the opportunities it presents for a more nuanced and comprehensive understanding of cancer. Finally, we present some of the latest comprehensive multimodal pan-cancer data sources. By surveying the landscape of multimodal data integration in oncology, our goal is to underline the transformative potential of multimodal GNNs and Transformers. Through technological advancements and the methodological innovations presented in this review, we aim to chart a course for future research in this promising field. This review may be the first that highlights the current state of multimodal modeling applications in cancer using GNNs and transformers, presents comprehensive multimodal oncology data sources, and sets the stage for multimodal evolution, encouraging further exploration and development in personalized cancer care.
more »
« less
- Award ID(s):
- 2234468
- PAR ID:
- 10599128
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Artificial Intelligence
- Volume:
- 7
- ISSN:
- 2624-8212
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A Heterogeneous Multimodal Graph Learning Framework for Recognizing User Emotions in Social NetworksThe rapid expansion of social media platforms has provided unprecedented access to massive amounts of multimodal user-generated content. Comprehending user emotions can provide valuable insights for improving communication and understanding of human behaviors. Despite significant advancements in Affective Computing, the diverse factors influencing user emotions in social networks remain relatively understudied. Moreover, there is a notable lack of deep learning-based methods for predicting user emotions in social networks, which could be addressed by leveraging the extensive multimodal data available. This work presents a novel formulation of personalized emotion prediction in social networks based on heterogeneous graph learning. Building upon this formulation, we design HMG-Emo, a Heterogeneous Multimodal Graph Learning Framework that utilizes deep learning-based features for user emotion recognition. Additionally, we include a dynamic context fusion module in HMG-Emo that is capable of adaptively integrating the different modalities in social media data. Through extensive experiments, we demonstrate the effectiveness of HMG-Emo and verify the superiority of adopting a graph neural network-based approach, which outperforms existing baselines that use rich hand-crafted features. To the best of our knowledge, HMG-Emo is the first multimodal and deep-learning-based approach to predict personalized emotions within online social networks. Our work highlights the significance of exploiting advanced deep learning techniques for less-explored problems in Affective Computing.more » « less
-
Multimodal fusion networks play a pivotal role in leveraging diverse sources of information for enhanced machine learning applications in aerial imagery. However, current approaches often suffer from a bias towards certain modalities, diminishing the potential benefits of multimodal data. This paper addresses this issue by proposing a novel modality utilization-based training method for multimodal fusion networks. The method aims to guide the network’s utilization on its input modalities, ensuring a balanced integration of complementary information streams, effectively mitigating the overutilization of dominant modalities. The method is validated on multimodal aerial imagery classification and image segmentation tasks, effectively maintaining modality utilization within ±10% of the user-defined target utilization and demonstrating the versatility and efficacy of the proposed method across various applications. Furthermore, the study explores the robustness of the fusion networks against noise in input modalities, a crucial aspect in real-world scenarios. The method showcases better noise robustness by maintaining performance amidst environmental changes affecting different aerial imagery sensing modalities. The network trained with 75.0% EO utilization achieves significantly better accuracy (81.4%) in noisy conditions (noise variance = 0.12) compared to traditional training methods with 99.59% EO utilization (73.7%). Additionally, it maintains an average accuracy of 85.0% across different noise levels, outperforming the traditional method’s average accuracy of 81.9%. Overall, the proposed approach presents a significant step towards harnessing the full potential of multimodal data fusion in diverse machine learning applications such as robotics, healthcare, satellite imagery, and defense applications.more » « less
-
Modality fusion is a cornerstone of multimodal learning, enabling information integration from diverse data sources. However, vanilla fusion methods are limited by (1) inability to account for heterogeneous interactions between modalities and (2) lack of interpretability in uncovering the multimodal interactions inherent in the data. To this end, we propose I2MoE (Interpretable Multimodal Interaction-aware Mixture of Experts), an end-to-end MoE framework designed to enhance modality fusion by explicitly modeling diverse multimodal interactions, as well as providing interpretation on a local and global level. First, I2MoE utilizes different interaction experts with weakly supervised interaction losses to learn multimodal interactions in a data-driven way. Second, I2MoE deploys a reweighting model that assigns importance scores for the output of each interaction expert, which offers sample-level and dataset-level interpretation. Extensive evaluation of medical and general multimodal datasets shows that I2MoE is flexible enough to be combined with different fusion techniques, consistently improves task performance, and provides interpretation across various real-world scenarios.more » « less
-
Human state recognition is a critical topic with pervasive and important applications in human–machine systems. Multimodal fusion, which entails integrating metrics from various data sources, has proven to be a potent method for boosting recognition performance. Although recent multimodal-based models have shown promising results, they often fall short in fully leveraging sophisticated fusion strategies essential for modeling adequate cross-modal dependencies in the fusion representation. Instead, they rely on costly and inconsistent feature crafting and alignment. To address this limitation, we propose an end-to-end multimodal transformer framework for multimodal human state recognition called Husformer. Specifically, we propose using cross-modal transformers, which inspire one modality to reinforce itself through directly attending to latent relevance revealed in other modalities, to fuse different modalities while ensuring sufficient awareness of the cross-modal interactions introduced. Subsequently, we utilize a self-attention transformer to further prioritize contextual information in the fusion representation. Extensive experiments on two human emotion corpora (DEAP and WESAD) and two cognitive load datasets [multimodal dataset for objective cognitive workload assessment on simultaneous tasks (MOCAS) and CogLoad] demonstrate that in the recognition of the human state, our Husformer outperforms both state-of-the-art multimodal baselines and the use of a single modality by a large margin, especially when dealing with raw multimodal features. We also conducted an ablation study to show the benefits of each component in Husformer. Experimental details and source code are available at https://github.com/SMARTlab-Purdue/Husformer.more » « less
An official website of the United States government

