skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 16, 2026

Title: Crustal to mantle melt storage during the evolution of Hawaiian volcanoes
As the Pacific Plate migrates over the mantle plume below Hawaiʻi, magma flux decreases, resulting in changes in eruptive volume, style, and composition. It is thought that melt storage becomes deeper and ephemeral with the transition from highly voluminous tholeiitic (shield stage) to the less voluminous alkaline (post-shield and rejuvenation stages) magmatism. To quantitatively test this, we applied high-precision fluid inclusion barometry via Raman spectroscopy to samples from representative volcanoes of different evolutionary stages. This suggests an evolution from shield-stage shallow magma storage (~1 to 2 kilometers) for Kīlauea to a post-shield stage that includes crustal magma storage within the volcanic edifice (~2 kilometers) and deeper storage below the Moho (~20 to 27 kilometers) for Haleakalā. The rejuvenation stage (Diamond Head) displays mantle-dominated storage (~22 to 30 kilometers). High melt fluxes likely form stable conduits from the mantle to a shallow reservoir in the shield volcanoes. As melt flux decreases, the Moho becomes the boundary controlling melt stagnation and evolution.  more » « less
Award ID(s):
2318614 2216738
PAR ID:
10599639
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Science Advances
Date Published:
Journal Name:
Science Advances
Volume:
11
Issue:
20
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Santorini volcano in the South Aegean Volcanic Arc has a detailed history of ongoing volcanic and seismic activity, making it a prime location for studying magma storage and transport at arc volcanoes. The shallow magmatic system (<5 km depth) is well constrained by geophysical studies, but the deeper crustal structure is not. Located 15 km NE of Santorini, the Kolumbo seamount is also an active edifice, with consistently more seismicity and hydrothermal venting than Santorini. Geochemical studies indicate that Santorini and Kolumbo are fed by separate mantle and crustal magma sources, but prior seismic studies suggest otherwise (Dimitriadis et al, 2010; McVey et al, 2020). This study addresses the nature of lower-crustal magma structure beneath arc volcanoes and whether evolved volcanoes and nearby vents are connected through their plumbing. Tomographic inversion of P-wave Moho reflection (PmP) and turning P-wave (Pg) traveltimes is used to create 3-D models of Moho depth and P-wave velocity (Vp) down to depths of ~25 km. The PROTEUS experiment provides an exceptionally dense and large aperture traveltime dataset from an amphibious array of ~150 seismometers and ~14,000 active marine sources. The data are ~33,000 manually picked PmP arrivals and ~256,000 Pg arrivals from existing studies. Results show a low Vp anomaly extending from the Moho to the surface. This anomaly starts at the base of the crust under the NW Santorini caldera and extends up to the east. It is most pronounced at 10-15 km depth, where it is offset from both Santorini and Kolumbo. Limited resolution prevents imaging of a connection between this mid-crustal anomaly and the known shallow magma storage region under the Santorini caldera. A high-velocity core beneath Santorini is not found, a feature interpreted at other volcanoes as a cooled intrusive complex. Because no additional low Vp anomalies are found in the lower crust, we infer that a common mantle source and mid-crustal plumbing system is actively feeding both Santorini and Kolumbo. The spatial offset and elongated nature of magma storage implies a complex relationship between evolving magmatic structures and tectonics. 
    more » « less
  2. Deep‐crustal magma plumbing at arc volcanoes controls the volume, frequency, and composition of magma being transported to and stored in the upper crust. However, the mid‐to‐lower crust remains a challenging region to image. We explore the mid‐to‐lower crustal velocity structure beneath the Christiana‐Santorini‐Kolumbo Volcanic Field (CSKVF) to better understand how an established stratovolcano and flanking volcano (Santorini and Kolumbo) are fed through the mid‐to‐lower crust. We use active‐source seismic data to obtain a P‐wave velocity model of the crust below the CSKVF. We invert direct and reflected P phases to cover the entire depth extent of the crust and solve for the Moho interface depth. Our model requires a curved Moho interface representative of crustal thickening via underplating. Results show a highVpanomaly in the lower crust under Santorini and a mid‐crustal lowVpanomaly offset from both Santorini and Kolumbo. We find that accumulation of magma is located under the local extensional basin in the upper mid‐crust (<10 km) but is offset at deeper depths. We find evidence for melt storage at 11–13 km depth feeding volcanism at the Kolumbo volcanic chain. This melt is also a plausible source for the 2025 seismic swarm and dike intrusion. Resolution is limited in the mid‐crust below the Santorini caldera, leaving Santorini's mid‐crustal magma plumbing unconstrained. We think it likely that Santorini and Kolumbo have entirely separate crustal plumbing systems and mantle sources, but allow the possibility of a connection in the mid or lower crust. 
    more » « less
  3. Abstract Volcanic evolution in ocean island settings is often controlled by variations in the chemistry and volumetric flux of magma from an underlying mantle plume. In locations such as Hawaiʻi or Réunion, this results in predictable variations in magma chemistry, the rate of volcanic activity, and the depth of magma storage with volcanic age and/or distance from the centre of plume upwelling. These systems, however, represent outliers in global plume volcanism due to their high buoyancy flux, frequent eruptions, and large distance from any plate boundary. Most mantle plumes display clear interaction with nearby plate boundaries, influencing the dynamics of solid plume material in the upper mantle and the distribution of melt across regions of active volcanism. Yet, the influence of plume–ridge interaction and plume–ridge distance on the structure, characteristics, and evolution of magma storage beneath ocean island volcanoes remains under constrained. In this study, we consider the evolution of magmatic systems in the Galápagos Archipelago, a region of mantle plume volcanism located 150–250 km south of the Galápagos Spreading Centre (GSC), focusing on the depth of magma storage during the eastward transport of volcanic systems away from the centre of plume upwelling. Geochemical analysis of gabbro xenoliths from Isla Floreana in the southeastern Galápagos suggest that they formed at ~2–2.5 Ma, when the island was located close to the centre of plume upwelling. These nodules, therefore, provide rare insights into the evolution of volcanic systems in the Galápagos Archipelago, tracking variations in the magma system architecture as the Nazca plate carried Isla Floreana eastwards, away from the plume centre. Mineral thermobarometry, thermodynamic modelling, and CO2 fluid inclusion barometry reveal that Isla Floreana’s plume-proximal stage of volcanic activity—recorded in the gabbro xenoliths—was characterized by the presence of high-pressure magma storage (>25 km), below the base of the crust. In fact, we find no petrological evidence that sustained, crustal-level magma storage ever occurred beneath Isla Floreana. Our results contrast with the characteristics of volcanic systems in the western Galápagos above the current centre of plume upwelling, where mid-crust magma storage has been identified. We propose that this change in magmatic architecture of plume-proximal volcanic centres in the Galápagos—from high-pressure mantle storage at 2.5 Ma to mid-crustal storage at the present day—is controlled by the variations in plume–ridge distance. Owing to the northward migration of the GSC, the distance separating the plume stem and GSC is not constant, and was likely <100 km at 2.5 Ma, significantly less than the current plume–ridge distance of 150–250 km. We propose that smaller plume–ridge distances result in greater diversion of plume-material to the GSC, ‘starving’ the eastern Galápagos islands of magma during their initial formation and restricting the ability for these systems to develop long-lived crustal magma reservoirs. 
    more » « less
  4. Abstract Determining the spatial relations between volcanic edifices and their underlying magma storage zones is fundamental for characterizing long‐term evolution and short‐term unrest. We compile centroid locations of upper crustal magma reservoirs at 56 arc volcanoes inferred from seismic, magnetotelluric, and geodetic studies. We show that magma reservoirs are often horizontally offset from their associated volcanic edifices by multiple kilometers, and the degree of offset broadly scales with reservoir depth. Approximately 20% of inferred magma reservoir centroids occur outside of the overlying volcano's mean radius. Furthermore, reservoir offset is inversely correlated with edifice size. Taking edifice volume as a proxy for long‐term magmatic flux, we suggest that high flux or prolonged magmatism leads to more centralized magma storage beneath arc volcanoes by overprinting upper crustal heterogeneities that would otherwise affect magma ascent. Edifice volumes therefore reflect the spatial distribution of underlying magma storage, which could help guide monitoring strategies at volcanoes. 
    more » « less
  5. Quantitative estimates of magma storage are fundamental to evaluating volcanic dynamics and hazards. Yet our understanding of subvolcanic magmatic plumbing systems and their variability remains limited. There is ongoing debate regarding the ephemerality of shallow magma storage and its volume relative to eruptive output, and so whether an upper-crustal magma body could be a sign of imminent eruption. Here we present seismic imaging of subvolcanic magmatic systems along the Cascade Range arc from systematically modelling the three-dimensional scattered wavefield of teleseismic body waves. This reveals compelling evidence of low-seismic-velocity bodies indicative of partial melt between 5 and 15 km depth beneath most Cascade Range volcanoes. The magma reservoirs beneath these volcanoes vary in depth, size and complexity, but upper-crustal magma bodies are widespread, irrespective of the eruptive flux or time since the last eruption of the associated volcano. This indicates that large volumes of melts can persist at shallow depth throughout eruption cycles beneath large volcanoes. 
    more » « less