skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 6, 2026

Title: Bernoulli-Gaussian Scale Mixture Model and BP Method for Multi-Snapshot Sparse Signal Recovery
We present a general Bernoulli Gaussian scale mixture based approach for modeling priors that can represent a large class of random signals. For inference, we introduce belief propagation (BP) to multi-snapshot signal recovery based on the minimum mean square error estimation criteria. Our method relies on intra-snapshot messages that update the signal vector for each snapshot and inter-snapshot messages that share probabilistic information related to the common sparsity structure across snapshots. Despite the very general model, our BP method can efficiently compute accurate approximations of marginal posterior PDFs. Preliminary numerical results illustrate the superior convergence rate and improved performance of the proposed method compared to approaches based on sparse Bayesian learning (SBL).  more » « less
Award ID(s):
2225617 2124929
PAR ID:
10599166
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-6874-1
Page Range / eLocation ID:
1 to 5
Subject(s) / Keyword(s):
Sparse signal recovery belief propagation MMSE estimation
Format(s):
Medium: X
Location:
Hyderabad, India
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a general Bernoulli Gaussian scale mixture based approach for modeling priors that can represent a large class of random signals. For inference, we introduce belief propagation (BP) to multi-snapshot signal recovery based on the minimum mean square error estimation criteria. Our method relies on intra-snapshot messages that update the signal vector for each snapshot and inter-snapshot messages that share probabilistic information related to the common sparsity structure across snapshots. Despite the very general model, our BP method can efficiently compute accurate approximations of marginal posterior PDFs. Preliminary numerical results illustrate the superior convergence rate and improved performance of the proposed method compared to approaches based on sparse Bayesian learning (SBL). 
    more » « less
  2. Belief propagation (BP) is a classical algorithm that approximates the marginal distribution associated with a factor graph by passing messages between adjacent nodes in the graph. It gained popularity in the 1990’s as a powerful decoding algorithm for LDPC codes. In 2016, Renes introduced a belief propagation with quantum messages (BPQM) and described how it could be used to decode classical codes defined by tree factor graphs that are sent over the classical-quantum pure-state channel. In this work, we propose an extension of BPQM to general binary-input symmetric classical-quantum (BSCQ) channels based on the implementation of a symmetric "paired measurement". While this new paired-measurement BPQM (PMBPQM) approach is suboptimal in general, it provides a concrete BPQM decoder that can be implemented with local operations. Finally, we demonstrate that density evolution can be used to analyze the performance of PMBPQM on tree factor graphs. As an application, we compute noise thresholds of some LDPC codes with BPQM decoding for a class of BSCQ channels. 
    more » « less
  3. With great potential for being applied to Internet of Things (IoT) applications, the concept of cloud-based Snapshot Real Time Kinematics (SRTK) was proposed and its feasibility under zero-baseline configuration was confirmed recently by the authors. This article first introduces the general workflow of the SRTK engine, as well as a discussion on the challenges of achieving an SRTK fix using actual snapshot data. This work also describes a novel solution to ensure a nanosecond level absolute timing accuracy in order to compute highly precise satellite coordinates, which is required for SRTK. Parameters such as signal bandwidth, integration time and baseline distances have an impact on the SRTK performance. To characterize this impact, different combinations of these settings are analyzed through experimental tests. The results show that the use of higher signal bandwidths and longer integration times result in higher SRTK fix rates, while the more significant impact on the performance comes from the baseline distance. The results also show that the SRTK fix rate can reach more than 93% by using snapshots with a data size as small as 255 kB. The positioning accuracy is at centimeter level when phase ambiguities are resolved at a baseline distance less or equal to 15 km. 
    more » « less
  4. We propose a novel family of connectionist models based on kernel machines and consider the problem of learning layer by layer a compositional hypothesis class (i.e., a feedforward, multilayer architecture) in a supervised setting. In terms of the models, we present a principled method to “kernelize” (partly or completely) any neural network (NN). With this method, we obtain a counterpart of any given NN that is powered by kernel machines instead of neurons. In terms of learning, when learning a feedforward deep architecture in a supervised setting, one needs to train all the components simultaneously using backpropagation (BP) since there are no explicit targets for the hidden layers (Rumelhart, Hinton, & Williams, 1986). We consider without loss of generality the two-layer case and present a general framework that explicitly characterizes a target for the hidden layer that is optimal for minimizing the objective function of the network. This characterization then makes possible a purely greedy training scheme that learns one layer at a time, starting from the input layer. We provide instantiations of the abstract framework under certain architectures and objective functions. Based on these instantiations, we present a layer-wise training algorithm for an l-layer feedforward network for classification, where l≥2 can be arbitrary. This algorithm can be given an intuitive geometric interpretation that makes the learning dynamics transparent. Empirical results are provided to complement our theory. We show that the kernelized networks, trained layer-wise, compare favorably with classical kernel machines as well as other connectionist models trained by BP. We also visualize the inner workings of the greedy kernelized models to validate our claim on the transparency of the layer-wise algorithm. 
    more » « less
  5. Existing design techniques for providing security guarantees against network-based attacks in cyber-physical systems (CPS) are based on continuous use of standard cryptographic tools to ensure data integrity. This creates an apparent conflict with common resource limitations in these systems, given that, for instance, lengthy message authentication codes (MAC) introduce significant overheads. We present a framework to ensure both timing guarantees for real-time network messages and Quality-of-Control (QoC) in the presence of network-based attacks. We exploit physical properties of controlled systems to relax constant integrity enforcement requirements, and show how the problem of feasibility testing of intermittently authenticated real-time messages can be cast as a mixed integer linear programming problem. Besides scheduling a set of real-time messages with predefined authentication rates obtained from QoC requirements, we show how to optimally increase the overall system QoC while ensuring that all real-time messages are schedulable. Finally, we introduce an efficient runtime bandwidth allocation method, based on opportunistic scheduling, in order to improve QoC. We evaluate our framework on a standard benchmark designed for CAN bus, and show how an infeasible message set with strong security guarantees can be scheduled if dynamics of controlled systems are taken into account along with real-time requirements. 
    more » « less