skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Belief Propagation with Quantum Messages for Symmetric Classical-Quantum Channels
Belief propagation (BP) is a classical algorithm that approximates the marginal distribution associated with a factor graph by passing messages between adjacent nodes in the graph. It gained popularity in the 1990’s as a powerful decoding algorithm for LDPC codes. In 2016, Renes introduced a belief propagation with quantum messages (BPQM) and described how it could be used to decode classical codes defined by tree factor graphs that are sent over the classical-quantum pure-state channel. In this work, we propose an extension of BPQM to general binary-input symmetric classical-quantum (BSCQ) channels based on the implementation of a symmetric "paired measurement". While this new paired-measurement BPQM (PMBPQM) approach is suboptimal in general, it provides a concrete BPQM decoder that can be implemented with local operations. Finally, we demonstrate that density evolution can be used to analyze the performance of PMBPQM on tree factor graphs. As an application, we compute noise thresholds of some LDPC codes with BPQM decoding for a class of BSCQ channels.  more » « less
Award ID(s):
2106213 1908730 2120757
PAR ID:
10435503
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
2022 IEEE Information Theory Workshop (ITW)
Page Range / eLocation ID:
494 to 499
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper considers the design and decoding of polar codes for general classical-quantum (CQ) channels. It focuses on decoding via belief-propagation with quantum messages (BPQM) and, in particular, the idea of paired-measurement BPQM (PM-BPQM) decoding. Since the PM-BPQM decoder admits a classical density evolution (DE) analysis, one can use DE to design a polar code for any CQ channel and then efficiently compute the trade-off between code rate and error probability. We have also implemented and tested a classical simulation of our PM-BPQM decoder for polar codes. While the decoder can be implemented efficiently on a quantum computer, simulating the decoder on a classical computer actually has exponential complexity. Thus, simulation results for the decoder are somewhat limited and are included primarily to validate our theoretical results. 
    more » « less
  2. This paper considers the design and decoding of polar codes for general classical-quantum (CQ) channels. It focuses on decoding via belief-propagation with quantum messages (BPQM) and, in particular, the idea of paired-measurement BPQM (PM-BPQM) decoding. Since the PM-BPQM decoder admits a classical density evolution (DE) analysis, one can use DE to design a polar code for any CQ channel and then efficiently compute the trade-off between code rate and error probability. We have also implemented and tested a classical simulation of our PM-BPQM decoder for polar codes. While the decoder can be implemented efficiently on a quantum computer, simulating the decoder on a classical computer actually has exponential complexity. Thus, simulation results for the decoder are somewhat limited and are included primarily to validate our theoretical results. 
    more » « less
  3. Quantum low-density parity-check (LDPC) codes are a promising family of quantum error-correcting codes for fault tolerant quantum computing with low overhead. Decoding quantum LDPC codes on quantum erasure channels has received more attention recently due to advances in erasure conversion for various types of qubits including neutral atoms, trapped ions, and superconducting qubits. Belief propagation with guided decimation (BPGD) decoding of quantum LDPC codes has demonstrated good performance in bit-flip and depolarizing noise. In this work, we apply BPGD decoding to quantum erasure channels. Using a natural modification, we show that BPGD offers competitive performance on quantum erasure channels for multiple families of quantum LDPC codes. Furthermore, we show that the performance of BPGD decoding on erasure channels can sometimes be improved significantly by either adding damping or adjusting the initial channel log-likelihood ratio for bits that are not erased. More generally, our results demonstrate BPGD is an effective general-purpose solution for erasure decoding across the quantum LDPC landscape. 
    more » « less
  4. Iterative decoding of graph-based codes and sparse recovery through approximate message passing (AMP) are two research areas that have seen monumental progress in recent decades. Inspired by these advances, this article introduces sparse regression LDPC codes (SR-LDPC codes) and their decoding. Sparse regression codes (SPARCs) are a class of error correcting codes that build on ideas from compressed sensing and can be decoded using AMP. In certain settings, SPARCs are known to achieve capacity; yet, their performance suffers at finite block lengths. Likewise, low-density parity-check (LDPC) codes can be decoded efficiently using belief propagation and can also be capacity achieving. This article introduces a novel concatenated coding structure that combines an LDPC outer code with a SPARC-inspired inner code. Efficient decoding for such a code can be achieved using AMP with a denoiser that performs belief propagation on the factor graph of the outer LDPC code. The proposed framework exhibits performance improvements over SPARCs and standard LDPC codes for finite block lengths and results in a steep waterfall in error performance, a phenomenon not observed in uncoded SPARCs. 
    more » « less
  5. This article introduces a novel concatenated coding scheme called sparse regression LDPC (SR-LDPC) codes. An SR-LDPC code consists of an outer non-binary LDPC code and an inner sparse regression code (SPARC), whose respective field size and section sizes are equal. For such codes, an efficient decoding algorithm is proposed based on approximate message passing (AMP) that dynamically shares soft information between inner and outer decoders. This dynamic exchange of information is facilitated by a denoiser that runs belief propagation (BP) on the factor graph of the outer LDPC code within each AMP iteration. It is shown that this BP denoiser falls within the framework of non-separable denoising functions and subsequently, that state evolution holds for the proposed AMP-BP algorithm. Leveraging the rich structure of SR-LDPC codes, this article proposes an efficient low-dimensional approximate state evolution recursion that can be used for efficient hyperparameter tuning, thus paving the way for future work on optimal code design. Finally, numerical simulations demonstrate that SR-LDPC codes outperform contemporary codes over the AWGN channel for parameters of practical interest. SR-LDPC codes are shown to be viable means for obtaining shaping gains over the AWGN channel. 
    more » « less