skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: Belief Propagation with Quantum Messages for Symmetric Classical-Quantum Channels
Belief propagation (BP) is a classical algorithm that approximates the marginal distribution associated with a factor graph by passing messages between adjacent nodes in the graph. It gained popularity in the 1990’s as a powerful decoding algorithm for LDPC codes. In 2016, Renes introduced a belief propagation with quantum messages (BPQM) and described how it could be used to decode classical codes defined by tree factor graphs that are sent over the classical-quantum pure-state channel. In this work, we propose an extension of BPQM to general binary-input symmetric classical-quantum (BSCQ) channels based on the implementation of a symmetric "paired measurement". While this new paired-measurement BPQM (PMBPQM) approach is suboptimal in general, it provides a concrete BPQM decoder that can be implemented with local operations. Finally, we demonstrate that density evolution can be used to analyze the performance of PMBPQM on tree factor graphs. As an application, we compute noise thresholds of some LDPC codes with BPQM decoding for a class of BSCQ channels.  more » « less
Award ID(s):
2106213 1908730
NSF-PAR ID:
10435503
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
2022 IEEE Information Theory Workshop (ITW)
Page Range / eLocation ID:
494 to 499
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper considers the design and decoding of polar codes for general classical-quantum (CQ) channels. It focuses on decoding via belief-propagation with quantum messages (BPQM) and, in particular, the idea of paired-measurement BPQM (PM-BPQM) decoding. Since the PM-BPQM decoder admits a classical density evolution (DE) analysis, one can use DE to design a polar code for any CQ channel and then efficiently compute the trade-off between code rate and error probability. We have also implemented and tested a classical simulation of our PM-BPQM decoder for polar codes. While the decoder can be implemented efficiently on a quantum computer, simulating the decoder on a classical computer actually has exponential complexity. Thus, simulation results for the decoder are somewhat limited and are included primarily to validate our theoretical results. 
    more » « less
  2. This paper considers the design and decoding of polar codes for general classical-quantum (CQ) channels. It focuses on decoding via belief-propagation with quantum messages (BPQM) and, in particular, the idea of paired-measurement BPQM (PM-BPQM) decoding. Since the PM-BPQM decoder admits a classical density evolution (DE) analysis, one can use DE to design a polar code for any CQ channel and then efficiently compute the trade-off between code rate and error probability. We have also implemented and tested a classical simulation of our PM-BPQM decoder for polar codes. While the decoder can be implemented efficiently on a quantum computer, simulating the decoder on a classical computer actually has exponential complexity. Thus, simulation results for the decoder are somewhat limited and are included primarily to validate our theoretical results. 
    more » « less
  3. Abstract

    For space-based laser communications, when the mean photon number per received optical pulse is much smaller than one, there is a large gap between communications capacity achievable with a receiver that performs individual pulse-by-pulse detection, and the quantum-optimal “joint-detection receiver” that acts collectively on long codeword-blocks of modulated pulses; an effect often termed “superadditive capacity”. In this paper, we consider the simplest scenario where a large superadditive capacity is known: a pure-loss channel with a coherent-state binary phase-shift keyed (BPSK) modulation. The two BPSK states can be mapped conceptually to two non-orthogonal states of a qubit, described by an inner product that is a function of the mean photon number per pulse. Using this map, we derive an explicit construction of the quantum circuit of a joint-detection receiver based on a recent idea of “belief-propagation with quantum messages” (BPQM). We quantify its performance improvement over the Dolinar receiver that performs optimal pulse-by-pulse detection, which represents the best “classical” approach. We analyze the scheme rigorously and show that it achieves the quantum limit of minimum average error probability in discriminating 8 (BPSK) codewords of a length-5 binary linear code with a tree factor graph. Our result suggests that a BPQM receiver might attain the Holevo capacity of this BPSK-modulated pure-loss channel. Moreover, our receiver circuit provides an alternative proposal for a quantum supremacy experiment, targeted at a specific application that can potentially be implemented on a small, special-purpose, photonic quantum computer capable of performing cat-basis universal qubit logic.

     
    more » « less
  4. We present Quantum Belief Propagation (QBP), a Quantum Annealing (QA) based decoder design for Low Density Parity Check (LDPC) error control codes, which have found many useful applications in Wi-Fi, satellite communications, mobile cellular systems, and data storage systems. QBP reduces the LDPC decoding to a discrete optimization problem, then embeds that reduced design onto quantum annealing hardware. QBP's embedding design can support LDPC codes of block length up to 420 bits on real state-of-the-art QA hardware with 2,048 qubits. We evaluate performance on real quantum annealer hardware, performing sensitivity analyses on a variety of parameter settings. Our design achieves a bit error rate of 10--8 in 20 μs and a 1,500 byte frame error rate of 10--6 in 50 μs at SNR 9 dB over a Gaussian noise wireless channel. Further experiments measure performance over real-world wireless channels, requiring 30 μs to achieve a 1,500 byte 99.99% frame delivery rate at SNR 15-20 dB. QBP achieves a performance improvement over an FPGA based soft belief propagation LDPC decoder, by reaching a bit error rate of 10--8 and a frame error rate of 10--6 at an SNR 2.5--3.5 dB lower. In terms of limitations, QBP currently cannot realize practical protocol-sized (e.g., Wi-Fi, WiMax) LDPC codes on current QA processors. Our further studies in this work present future cost, throughput, and QA hardware trend considerations. 
    more » « less
  5. Quantum technologies are maturing by the day and their near-term applications are now of great interest. Deep-space optical communication involves transmission over the pure-state classical-quantum channel. For optimal detection, a joint measurement on all output qubits is required in general. Since this is hard to realize, current (sub-optimal) schemes perform symbol-by-symbol detection followed by classical post-processing. In this paper we focus on a recently proposed belief propagation algorithm by Renes that passes qubit messages on the factor graph of a classical error-correcting code. More importantly, it only involves single-qubit Pauli measurements during the process. For an example 5-bit code, we analyze the involved density matrices and calculate the error probabilities on this channel. Then we numerically compute the optimal joint detection limit using the Yuen-Kennedy-Lax conditions and demonstrate that the calculated error probabilities for this algorithm appear to achieve this limit. This represents a first step towards achieveing quantum communication advantage. We verify our analysis using Monte-Carlo simulations in practice. 
    more » « less