skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hydrogel Composition Effects on Performance as Single-Walled Carbon Nanotube Purification Media
Hydrogel microsphere media allows for postsynthetic purification of single-walled carbon nanotubes (SWNTs), affording characterization and application of their unique (n,m) chirality-dependent properties. This work reports the characterization of five hydrogel resins, Sephacryl S-100, S-200, S-300, S-400, and S-500, and the implementation of each as a SWNT purification medium. The physiochemical properties of each resin were explored spectroscopically through elemental analyses and with both light and electron microscopy. Both surface porosity and hydrogel swelling ratio were found to increase as the concentration of component allyl dextran (aDEX) decreased, each with an increasing Sephacryl S-number. Conversely, invariant properties included a hydrogel microsphere size distribution and concentrations of components methylenebisacrylamide and ammonium persulfate. When employed within gel-based SWNT purification schemes in overloading conditions, Sephacryl formulations of larger S-number adsorbed fewer SWNTs, but the chirality dependence of SWNT adsorption and elution was approximately consistent across all resins. In underloading conditions, approximately one-third of introduced SWNTs passed through each resin unabsorbed, while the resins showed varying chirality-dependent adsorption efficiencies. These observations collectively identify aDEX-rich gel regions as being responsible for SWNT purification, along with a SWNT-exclusive parameter other than chirality (speculated as length) that convolutes the effectiveness of gel-based single-chirality purification.  more » « less
Award ID(s):
2107748
PAR ID:
10599309
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACS Publications
Date Published:
Journal Name:
The Journal of Physical Chemistry C
Volume:
128
Issue:
38
ISSN:
1932-7447
Page Range / eLocation ID:
15923 to 15936
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Achieving the co-assembly of more than one component represents an important challenge in the drive to create functional self-assembled nanomaterials. Multicomponent nanomaterials comprised of several discrete, spatially sorted domains of components with high degrees of internal order are particularly important for applications such as optoelectronics. In this work, single-walled carbon nanotubes (SWNTs) were threaded through the inner channel of nanotubes formed by the bolaamphiphilic self-assembly of a naphthalenediimide-lysine (NDI-Bola) monomer. The self-assembly process was driven by electrostatic interactions, as indicated by ζ -potential measurements, and cation–π interactions between the surface of the SWNT and the positively charged, NDI-Bola nanotube interior. To increase the threading efficiency, the NDI-Bola nanotubes were fragmented into shortened segments with lengths of <100 nm via sonication-induced shear, prior to co-assembly with the SWNTs. The threading process created an initial composite nanostructure in which the SWNTs were threaded by multiple, shortened segments of the NDI-Bola nanotube that progressively re-elongated along the SWNT surface into a continuous radial coating around the SWNT. The resultant composite structure displayed NDI-Bola wall thicknesses twice that of the parent nanotube, reflecting a bilayer wall structure, as compared to the monolayer structure of the parent NDI-Bola nanotube. As a final, co-axial outer layer, poly( p -phenyleneethynylene) (PPE-SO 3 Na, M W = 5.76 × 10 4 , PDI – 1.11) was wrapped around the SWNT/NDI-Bola composite resulting in a three-component (SWNT/NDI-Bola/PPE-SO 3 Na) composite nanostructure. 
    more » « less
  2. Hbr363: WS3 One year of resin-extracted solutes from variably saturated soils The Lateral Weathering Study looks at spatial patterns of mineral weathering processes at Hubbard Brook Experimental Forest. This project is characterizing mineral and elemental depletion/enrichment, soil morphology and chemistry, solute transport, and groundwater chemistry along hydropedological gradients. This dataset provides the total elemental mass of inorganic solutes (Ca, Na, Mg, Al, Fe, Mn, P, and S) as well as dissolved organic carbon (DOC) that were extracted off resins installed into shallow groundwater wells (~30-100cm) in Watershed 3. Resin packs were deployed for a total of one year (August 2019-2020) with four consecutive deployment periods, to avoid overloading resin ion capacity. Total mass for each solute was accounted for an entire resin pack, which was 5cm in height and 5cm in diameter, containing approximately 90 g of resin. Resin packs were installed in three different topographic positions along three transects (sites = 9), to characterize solute mass fluxes through different hydropedological units. 
    more » « less
  3. The challenge of providing safe and reliable drinking water is being exacerbated by accelerating population growth, climate change, and the increase of natural and anthropogenic contamination. Current water treatment plants are not effective at the removal of pervasive, hydrophilic, low molecular weight contaminants, which can adversely affect human health. Herein, we describe a green all-aqueous synthesis of an ion exchange resin comprised of short chain polyelectrolyte brushes covalently bound to single walled carbon nanotubes. This composite material is incorporated onto a membrane and the active sites are tested against analyte adsorption. Our control studies of water or brine pushed through these materials, found no evidence of single-walled carbon nanotubes (SWCNTs) or carbon/polymer coming out of the membrane filter. We have measured the adsorption capacity and percentage removal of ten different compounds (pharmaceuticals, pesticides, disinfection byproducts and perfluoroalkylated substances). We have measured their removal with an efficiency up to 95–100%. The synthesis, purification, kinetics, and characterization of the polyelectrolytes, and the subsequent nanoresin are presented below. The materials were tested as thin films. Regeneration capacity was measured up to 20 cycles and the material has been shown to be safe and reusable, enabling them as potential candidates for sustainable water purification. 
    more » « less
  4. Non-toxic resins formulated with renewable components have been receiving increased attention as sustainable alternatives to petroleum-based resins. In this work, we demonstrate a new class of lignin-amino acid (LA) resins, formulated with non-toxic components that are abundant and can be renewably sourced from field leftovers (corn cobs) and lysine (from bio-based sugars). NMR (1H, 31P, 13C-1H HSQC, 15N-1H HSQC, and 15N-1H HMBC), FTIR, thermogravimetric, gel permeation chromatography and elemental analyses provide insights into the physicochemical properties of the resins, including the presence of LA linkages such as C-N cross linking. The LA resin creates strong bonds between pieces of wood, metals (aluminum and stainless steel) and plastics. Internal bond strengths (IBS) of balsa wood and medium density fiberboard specimens glued with LA resins, measured using an Instron instrument, were comparable to those bonded with commercial polyurethane (PU) and polyvinyl acetate (PVAc) resins. Resins prepared with ozone-pretreated lignin have significantly larger molar masses and display increased bond strengths with glued substates as inferred from IBS measurements. This is attributed to the creation of reactive oxygen-based functionalities in the lignin upon ozone pretreatment. Lignin-amino acid resins thus show promise as a feasible and sustainable alternative to petroleum-based resins. 
    more » « less
  5. Abstract Nanostructured epoxy composite resins have broad usage in adhesives, coatings, composites, and 3D printing. With these materials, careful control of the rheological properties is critical to ensuring that the properties meet their required performance targets. However, it can be difficult to accurately measure the rheological properties. In this work, we establish a method to develop a reliable pre-shear (PS) procedure to repeatably measure the apparent yield stress of the resins, which is critical to ensure the accurate understanding of the material behavior. The resins in this study consisted of an epoxy resin with nanoclay as a shear thinning agent, ionic liquid (1-ethyl-3-methylimidazolium dicyanamide) as a latent curing agent, and poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) block copolymer (BCP) as a nanostructured component. We establish a methodology to evaluate the effectiveness of a pre-shear protocol and evaluate several methods to identify a pre-shear procedure that resulted in repeatable transient creep results on a rheometer. We identified that large amplitude oscillatory shear was the most effective method for these materials, and the optimal magnitude of the shear was dependent on the composition of the epoxy resins. Through the consistent application of this approach, we were able to use transient creep testing to identify the phase boundaries in the epoxy/BCP resins when the BCP micelles undergo an order-order transition from spherical to hexagonal micelles through changes in the yield stress of the material. This work adds to the new growing body of literature demonstrating the importance of establishing rigorous pre-shear conditions to improve the accuracy of structured yield stress fluids. 
    more » « less