skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 1, 2025

Title: Evolutionary Links Between Skull Shape and Body Size Suggest Allometric Forces and Selection at Work in a Generalist Group of Lizards
ABSTRACT The vertebrate skull is a complex structure, and studies of skull shape have yielded considerable insight into the evolutionary forces shaping specialized phenotypes in organisms as diverse as bats, frogs, and fossorial animals. Here, we used phylogenetic comparative analyses of CT scans of male skulls from 57 species ofSceloporuslizards to explore patterns of skull evolution in a group of generalist taxa. We found that most interspecific variation is in terms of skull elongation such that some species have long, narrow skulls, whereas others exhibit more compact and robust skulls. We also found strong links to overall body size, with evolutionary shifts to larger bodies being associated with more compact skulls and slower evolutionary rates. This is the opposite of the pattern in most mammals in which larger bodied species have longer snouts, and more like the pattern in frogs in which function has played a more important evolutionary role. Also, unlike other vertebrates, the jaw, anterior, and posterior parts of theSceloporusskull are largely integrated, having evolved independently of each other only to a limited, albeit significant, degree. Our results emphasize the importance of body size in the evolutionary shaping of the skull and suggest that additional studies of behavioral function in a generalist group are warranted.  more » « less
Award ID(s):
2154898
PAR ID:
10599382
Author(s) / Creator(s):
; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Ecology and Evolution
Volume:
14
Issue:
11
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The majority of animal species have complex life cycles, in which larval stages may have very different morphologies and ecologies relative to adults. Anurans (frogs) provide a particularly striking example. However, the extent to which larval and adult morphologies (e.g. body size) are correlated among species has not been broadly tested in any major group. Recent studies have suggested that larval and adult morphology are evolutionarily decoupled in frogs, but focused within families and did not compare the evolution of body sizes. Here, we test for correlated evolution of adult and larval body size across 542 species from 42 families, including most families with a tadpole stage. We find strong phylogenetic signal in larval and adult body sizes, and find that both traits are significantly and positively related across frogs. However, this relationship varies dramatically among clades, from strongly positive to weakly negative. Furthermore, rates of evolution for both variables are largely decoupled among clades. Thus, some clades have high rates of adult body-size evolution but low rates in tadpole body size (and vice versa). Overall, we show for the first time that body sizes are generally related between adult and larval stages across a major group, even as evolutionary rates of larval and adult size are largely decoupled among species and clades. 
    more » « less
  2. Muñoz, Martha (Ed.)
    Abstract Selective pressures favor morphologies that are adapted to distinct ecologies, resulting in trait partitioning among ecomorphotypes. However, the effects of these selective pressures vary across taxa, especially because morphology is also influenced by factors such as phylogeny, body size, and functional trade-offs. In this study, we examine how these factors impact functional diversification in mammals. It has been proposed that trait partitioning among mammalian ecomorphotypes is less pronounced at small body sizes due to biomechanical, energetic, and environmental factors that favor a “generalist” body plan, whereas larger taxa exhibit more substantial functional adaptations. We title this the Divergence Hypothesis (DH) because it predicts greater morphological divergence among ecomorphotypes at larger body sizes. We test DH by using phylogenetic comparative methods to examine the postcranial skeletons of 129 species of taxonomically diverse, small-to-medium-sized (<15 kg) mammals, which we categorize as either “tree-dwellers” or “ground-dwellers.” In some analyses, the morphologies of ground-dwellers and tree-dwellers suggest greater between-group differentiation at larger sizes, providing some evidence for DH. However, this trend is neither particularly strong nor supported by all analyses. Instead, a more pronounced pattern emerges that is distinct from the predictions of DH: within-group phenotypic disparity increases with body size in both ground-dwellers and tree-dwellers, driven by morphological outliers among “medium”-sized mammals. Thus, evolutionary increases in body size are more closely linked to increases in within-locomotor-group disparity than to increases in between-group disparity. We discuss biomechanical and ecological factors that may drive these evolutionary patterns, and we emphasize the significant evolutionary influences of ecology and body size on phenotypic diversity. 
    more » « less
  3. Larger animals tend to have larger brains and smaller animals tend to have smaller ones. However, some species do not fit the pattern that would be expected based on their body size. This variation between species can also apply to individual brain regions. This may be due to evolutionary forces shaping the brain when favouring particular behaviours. However, it is difficult to directly link changes in species behaviour and variations in brain structure. One way to understand the impact of evolutionary adaptations is to study species that have developed new behaviours and compare them to related ones that lack such a behaviour. An opportunity to do this lies in the ability of several species of fish to produce and sense electric fields in water. While this system is not found in most fish, it has evolved multiple times independently in distantly-related lineages. Schumacher and Carlson examined whether differences in the size of brains and individual regions between species were associated with the evolution of electric field generation and sensing. Micro-computed tomography, or μCT, scans of the brains of multiple fish species revealed that the species that can produce electricity – also known as ‘electrogenic’ species’ – have more similar brain structures to each other than to their close relatives that lack this ability. The brain regions involved in producing and detecting electrical charges were larger in these electrogenic fish. This similarity was apparent despite variations in how total brain size has evolved with body size across species. These results demonstrate how evolutionary forces acting on particular behaviours can lead to predictable changes in brain structure. Understanding how and why brains evolve will allow researchers to better predict how species’ brains and behaviours may adapt as human activities alter their environments. 
    more » « less
  4. ABSTRACT In recent years, major changes have been proposed for the phylogenetic relationships within the Gymnophthalmoidea, including the description of Alopoglossidae. Recent studies relied primarily on molecular data and have not accounted for evidence from alternative sources, such as morphology. In this study, we provide a detailed bone‐by‐bone description of the skull ofPtychoglossus vallensisand compare this species with other gymnophthalmoideans. The description was based on 10 cleared‐and‐stained specimens, four disarticulated skulls, and computed microtomography data ofP. vallensis. Most recent phylogenetic hypothesis for the Gymnophthalmoidea was used as a framework to compare the skull ofP. vallensiswith other species of the Alopoglossidae, Gymnophthalmidae, and Teiidae. Marked similarities between alopoglossids and gymnophthalmids were observed in contrast to teiids, probably due to convergence generated by miniaturization. We also qualitatively analyzed the kinesis of the skull ofP. vallensisconcluding that is highly akinetic, a trait commonly evolved in fossorial, primarily burrowing squamates. We also describe one unique osteological feature for Alopoglossidae that is not known in any other squamate group. Anat Rec, 302:1074–1092, 2019. © 2018 Wiley Periodicals, Inc. 
    more » « less
  5. Migratory animals respond to environmental heterogeneity by predictably moving long distances in their lifetime. Migration has evolved repeatedly in animals, and many adaptations are found across the tree of life that increase migration efficiency. Life-history theory predicts that migratory species should evolve a larger body size than non-migratory species, and some empirical studies have shown this pattern. A recent study analysed the evolution of body size between diadromous and non-diadromous shads, herrings, anchovies and allies, finding that species evolved larger body sizes when adapting to a diadromous lifestyle. It remains unknown whether different fish clades adapt to migration similarly. We used an adaptive landscape framework to explore body size evolution for over 4500 migratory and non-migratory species of ray-finned fishes. By fitting models of macroevolution, we show that migratory species are evolving towards a body size that is larger than non-migratory species. Furthermore, we find that migratory lineages evolve towards their optimal body size more rapidly than non-migratory lineages, indicating body size is a key adaption for migratory fishes. Our results show, for the first time, that the largest vertebrate radiation on the planet exhibited strong evolutionary determinism when adapting to a migratory lifestyle. 
    more » « less