skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 5, 2026

Title: Equivariant geometric convolutions for dynamical systems on vector and tensor images
Machine learning methods are increasingly being employed as surrogate models in place of computationally expensive and slow numerical integrators for a bevy of applications in the natural sciences. However, while the laws of physics are relationships between scalars, vectors and tensors that hold regardless of the frame of reference or chosen coordinate system, surrogate machine learning models are not coordinate-free by default. We enforce coordinate freedom by using geometric convolutions in three model architectures: a ResNet, a Dilated ResNet and a UNet. In numerical experiments emulating two-dimensional compressible Navier–Stokes, we see better accuracy and improved stability compared with baseline surrogate models in almost all cases. The ease of enforcing coordinate freedom without making major changes to the model architecture provides an exciting recipe for any convolutional neural network-based method applied to an appropriate class of problems.  more » « less
Award ID(s):
2339682
PAR ID:
10599490
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Philosophical Transactions A
Date Published:
Journal Name:
Philosophical transactions Royal Society Mathematical Physical and engineering sciences
ISSN:
1364-503X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent methods to simulate complex fluid dynamics problems have replaced computationally expensive and slow numerical integrators with surrogate models learned from data. However, while the laws of physics are relationships between scalars, vectors, and tensors that hold regardless of the frame of reference or chosen coordinate system, surrogate machine learning models are not coordinate-free by default. We enforce coordinate freedom by using geometric convolutions in three model architectures: a ResNet, a Dilated ResNet, and a UNet. In numerical experiments emulating 2D compressible Navier-Stokes, we see better accuracy and improved stability compared to baseline surrogate models in almost all cases. The ease of enforcing coordinate freedom without making major changes to the model architecture provides an exciting recipe for any CNN-based method applied on an appropriate class of problems. 
    more » « less
  2. Catalyzed by enormous success in the industrial sector, many research programs have been exploring data-driven, machine learning approaches. Performance can be poor when the model is extrapolated to new regions of chemical space, e.g., new bonding types, new many-body interactions. Another important limitation is the spatial locality assumption in model architecture, and this limitation cannot be overcome with larger or more diverse datasets. The outlined challenges are primarily associated with the lack of electronic structure information in surrogate models such as interatomic potentials. Given the fast development of machine learning and computational chemistry methods, we expect some limitations of surrogate models to be addressed in the near future; nevertheless spatial locality assumption will likely remain a limiting factor for their transferability. Here, we suggest focusing on an equally important effort—design of physics-informed models that leverage the domain knowledge and employ machine learning only as a corrective tool. In the context of material science, we will focus on semi-empirical quantum mechanics, using machine learning to predict corrections to the reduced-order Hamiltonian model parameters. The resulting models are broadly applicable, retain the speed of semiempirical chemistry, and frequently achieve accuracy on par with much more expensive ab initio calculations. These early results indicate that future work, in which machine learning and quantum chemistry methods are developed jointly, may provide the best of all worlds for chemistry applications that demand both high accuracy and high numerical efficiency. 
    more » « less
  3. null (Ed.)
    Due to increasing volume of measurements in smart grids, surrogate based learning approaches for modeling the power grids are becoming popular. This paper uses regression based models to find the unknown state variables on power systems. Generally, to determine these states, nonlinear systems of power flow equations are solved iteratively. This study considers that the power flow problem can be modeled as an data driven type of a model. Then, the state variables, i.e., voltage magnitudes and phase angles are obtained using machine learning based approaches, namely, Extreme Learning Machine (ELM), Gaussian Process Regression (GPR), and Support Vector Regression (SVR). Several simulations are performed on the IEEE 14 and 30-Bus test systems to validate surrogate based learning based models. Moreover, input data was modified with noise to simulate measurement errors. Numerical results showed that all three models can find state variables reasonably well even with measurement noise. 
    more » « less
  4. Efficient real-time solvers for forward and inverse problems are essential in engineering and science applications. Machine learning surrogate models have emerged as promising alter- natives to traditional methods, offering substantially reduced computational time. Never- theless, these models typically demand extensive training datasets to achieve robust gen- eralization across diverse scenarios. While physics-based approaches can partially mitigate this data dependency and ensure physics-interpretable solutions, addressing scarce data regimes remains a challenge. Both purely data-driven and physics-based machine learning approaches demonstrate severe overfitting issues when trained with insufficient data. We propose a novel model-constrained Tikhonov autoencoder neural network framework, called TAEN, capable of learning both forward and inverse surrogate models using a single arbitrary observational sample. We develop comprehensive theoretical foundations including forward and inverse inference error bounds for the proposed approach for linear cases. For compara- tive analysis, we derive equivalent formulations for pure data-driven and model-constrained approach counterparts. At the heart of our approach is a data randomization strategy with theoretical justification, which functions as a generative mechanism for exploring the train- ing data space, enabling effective training of both forward and inverse surrogate models even with a single observation, while regularizing the learning process. We validate our approach through extensive numerical experiments on two challenging inverse problems: 2D heat conductivity inversion and initial condition reconstruction for time-dependent 2D Navier–Stokes equations. Results demonstrate that TAEN achieves accuracy comparable to traditional Tikhonov solvers and numerical forward solvers for both inverse and forward problems, respectively, while delivering orders of magnitude computational speedups. 
    more » « less
  5. Brehm, Christoph; Pandya, Shishir (Ed.)
    Computational fluid dynamics (CFD) and its uncertainty quantification are computationally expensive. We use Gaussian Process (GP) methods to demonstrate that machine learning can build efficient and accurate surrogate models to replace CFD simulations with significantly reduced computational cost without compromising the physical accuracy. We also demonstrate that both epistemic uncertainty (machine learning model uncertainty) and aleatory uncertainty (randomness in the inputs of CFD) can be accommodated when the machine learning model is used to reveal fluid dynamics. The demonstration is performed by applying simulation of Hagen-Poiseuille and Womersley flows that involve spatial and spatial-tempo responses, respectively. Training points are generated by using the analytical solutions with evenly discretized spatial or spatial-temporal variables. Then GP surrogate models are built using supervised machine learning regression. The error of the GP model is quantified by the estimated epistemic uncertainty. The results are compared with those from GPU-accelerated volumetric lattice Boltzmann simulations. The results indicate that surrogate models can produce accurate fluid dynamics (without CFD simulations) with quantified uncertainty when both epistemic and aleatory uncertainties exist. 
    more » « less