skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mind the gap: Bridging the divide between AI aspirations and the reality of autonomous microscopy
What does materials science look like in the “Age of Artificial Intelligence?” Each material’s domain—synthesis, characterization, and modeling—has a different answer to this question, motivated by unique challenges and constraints. This work focuses on the tremendous potential of autonomous characterization within electron microscopy. We present our recent advancements in developing domain-aware, multimodal models for microscopy analysis capable of describing complex atomic systems. We then address the critical gap between the theoretical promise of autonomous microscopy and its current practical limitations, showcasing recent successes while highlighting the necessary developments to achieve robust, real-world autonomy.  more » « less
Award ID(s):
2134607
PAR ID:
10599564
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
APL Machine Learning
Volume:
3
Issue:
2
ISSN:
2770-9019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Organic mixed ionic–electronic conductors (OMIECs) are a unique class of soft, conjugated polymeric materials. The simultaneous electronic and ionic transport of OMIECs enables a new type of device, namely, organic electrochemical transistors, among other emerging technologies. However, the dynamic nature—where charge transport, doping kinetics, and morphological changes occur concurrently—poses significant challenges in the characterization and understanding of OMIECs. Recent advances in in situ optical techniques, including ultraviolet–visible–near-infrared spectroscopy, Raman spectroscopy, and microscopy imaging, have provided valuable insights into the charge transport mechanisms and ionic doping dynamics spanning from the microscopic to the device scale. In this perspective, based on several archetypal OMIECs, we survey how spectroscopic signatures were used to reveal key physical processes in these materials. Looking forward, we propose that ultrafast spectroscopy and microscopy techniques—such as transient absorption spectroscopy, terahertz time-domain spectroscopy, pump–probe microscopy, and photothermal microscopy—hold great potential for uncovering more fundamental mechanisms of OMIEC operation, including quasiparticle dynamics, intrinsic electrical conductivity, and carrier mobility, which remain under-explored. Integrating optical characterization with electrochemical measurements will enable in operando studies on state-of-the-art devices, with results further refined by parallel advancements in theoretical modeling. Altogether, we envision in operando optical characterization with spatial, spectral, and temporal resolution across multiple scales as a powerful pathway to advance the understanding of OMIEC mechanisms and their structure–property relationships. 
    more » « less
  2. Recent advances in ferroic materials have identified topological defects as promising candidates for enabling additional functionalities in future electronic systems. The generation of stable and customizable polar topologies is needed to achieve multistates that enable beyond-binary device architectures. In this study, we show how to autonomously pattern on-demand highly tunable striped closure domains in pristine rhombohedral-phase BiFeO3 thin films through precise scanning of a biased atomic force microscopy tip along carefully designed paths. By employing this strategy, we generate and manipulate closed-loop structures with high spatial resolution in an automated manner, allowing the creation of highly tunable and intricate topological domain structures that exhibit distinct polarization configurations without the need for electrode deposition or complex heterostructure growth. As a proof-of-concept for ferroelectric beyond-binary memory devices, we use such topological domains as multistates, engineering an alphabet and automating the symbolic writing/reading process using autonomous microscopy. The resulting information density is compared with that of current commercially available memory devices, demonstrating the potential of ferroelectric topological domains for multistate information storage applications. 
    more » « less
  3. Ensuring robust 3D object detection and localization is crucial for many applications in robotics and autonomous driving. Recent models, however, face difficulties in maintaining high performance when applied to domains with differing sensor setups or geographic locations, often resulting in poor localization accuracy due to domain shift. To overcome this challenge, we introduce a novel diffusion-based box refinement approach. This method employs a domain-agnostic diffusion model, conditioned on the LiDAR points surrounding a coarse bounding box, to simultaneously refine the box’s location, size, and orientation. We evaluate this approach under various domain adaptation settings, and our results reveal significant improvements across different datasets, object classes and detectors. Our PyTorch implementation is available at https://github.com/cxy1997/DiffuBox. 
    more » « less
  4. Abstract Electrocatalysis and photoelectrochemistry are critical to technologies like fuel cells, electrolysis, and solar fuels. Material stability and interfacial phenomena are central to the performance and long‐term viability of these technologies. Researchers need tools to uncover the fundamental processes occurring at the electrode/electrolyte interface. Numerous analytical instruments are well‐developed for material characterization, but many are ex situ techniques often performed under vacuum and without applied bias. Such measurements miss dynamic phenomena in the electrolyte under operational conditions. However, innovative advancements have allowed modification of these techniques for in situ characterization in liquid environments at electrochemically relevant conditions. This review explains some of the main in situ electrochemical characterization techniques, briefly explaining the principle of operation and highlighting key work in applying the method to investigate material stability and interfacial properties for electrocatalysts and photoelectrodes. Covered methods include spectroscopy (in situ UV–vis, ambient pressure X‐ray photoelectron spectroscopy (APXPS), and in situ Raman), mass spectrometry (on‐line inductively coupled plasma mass spectrometry (ICP‐MS) and differential electrochemical mass spectrometry (DEMS)), and microscopy (in situ transmission electron microscopy (TEM), electrochemical atomic force microscopy (EC‐AFM), electrochemical scanning tunneling microscopy (EC‐STM), and scanning electrochemical microscopy (SECM)). Each technique's capabilities and advantages/disadvantages are discussed and summarized for comparison. 
    more » « less
  5. Electronic connections between active material particles and the conductive carbon binder domain govern high-energy commercial Li-ion batteries' rate capability and lifetime (LIB). This work develops an in situ electrochemical fluorescent microscopy (EFM) technique that maps fluorescence intensity to these local electronic connections. Specifically, rapid redox kinetics of an electrofluorophore translates to reaction distributions limited by the electronic accessibility of battery electrode regions and individual active material particles. This technique can visualize hot spots, dead zones, and isolated particles on the electrode surface. EFM characterization of a series of LiNi0.33Mn0.33Co0.33O2electrodes across processing parameters finds a significant negative correlation between the number of disconnected active particles and the rate capability. This low-cost technique provides quantitative mesoscale characterization of commercial LIB electrodes with fast throughput (<60 s) to facilitate rapid research and development and provide manufacturing quality control. 
    more » « less