skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 22, 2026

Title: Autonomous Multistate Nanoencoding Using Combinatorial Ferroelectric Closure Domains in BiFeO 3
Recent advances in ferroic materials have identified topological defects as promising candidates for enabling additional functionalities in future electronic systems. The generation of stable and customizable polar topologies is needed to achieve multistates that enable beyond-binary device architectures. In this study, we show how to autonomously pattern on-demand highly tunable striped closure domains in pristine rhombohedral-phase BiFeO3 thin films through precise scanning of a biased atomic force microscopy tip along carefully designed paths. By employing this strategy, we generate and manipulate closed-loop structures with high spatial resolution in an automated manner, allowing the creation of highly tunable and intricate topological domain structures that exhibit distinct polarization configurations without the need for electrode deposition or complex heterostructure growth. As a proof-of-concept for ferroelectric beyond-binary memory devices, we use such topological domains as multistates, engineering an alphabet and automating the symbolic writing/reading process using autonomous microscopy. The resulting information density is compared with that of current commercially available memory devices, demonstrating the potential of ferroelectric topological domains for multistate information storage applications.  more » « less
Award ID(s):
2132105
PAR ID:
10626476
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
ACS Nano
Volume:
19
Issue:
30
ISSN:
1936-0851
Page Range / eLocation ID:
27692 to 27701
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hierarchical assemblies of ferroelectric nanodomains, so-called super-domains, can exhibit exotic morphologies that lead to distinct behaviours. Controlling these super-domains reliably is critical for realizing states with desired functional properties. Here we reveal the super-switching mechanism by using a biased atomic force microscopy tip, that is, the switching of the in-plane super-domains, of a model ferroelectric Pb0.6Sr0.4TiO3. We demonstrate that the writing process is dominated by a super-domain nucleation and stabilization process. A complex scanning-probe trajectory enables on-demand formation of intricate centre-divergent, centre-convergent and flux-closure polar structures. Correlative piezoresponse force microscopy and optical spectroscopy confirm the topological nature and tunability of the emergent structures. The precise and versatile nanolithography in a ferroic material and the stability of the generated structures, also validated by phase-field modelling, suggests potential for reliable multi-state nanodevice architectures and, thereby, an alternative route for the creation of tunable topological structures for applications in neuromorphic circuits. 
    more » « less
  2. Abstract Domain wall nanoelectronics is a rapidly evolving field, which explores the diverse electronic properties of the ferroelectric domain walls for application in low‐dimensional electronic systems. One of the most prominent features of the ferroelectric domain walls is their electrical conductivity. Here, using a combination of scanning probe and scanning transmission electron microscopy, the mechanism of the tunable conducting behavior of the domain walls in the sub‐micrometer thick films of the technologically important ferroelectric LiNbO3is explored. It is found that the electric bias generates stable domains with strongly inclined domain boundaries with the inclination angle reaching 20° with respect to the polar axis. The head‐to‐head domain boundaries exhibit high conductance, which can be modulated by application of the sub‐coercive voltage. Electron microscopy visualization of the electrically written domains and piezoresponse force microscopy imaging of the very same domains reveals that the gradual and reversible transition between the conducting and insulating states of the domain walls results from the electrically induced wall bending near the sample surface. The observed modulation of the wall conductance is corroborated by the phase‐field modeling. The results open a possibility for exploiting the conducting domain walls as the electrically controllable functional elements in the multilevel logic nanoelectronics devices. 
    more » « less
  3. Abstract Ferroelectrics are being increasingly called upon for electronic devices in extreme environments. Device performance and energy efficiency is highly correlated to clock frequency, operational voltage, and resistive loss. To increase performance it is common to engineer ferroelectric domain structure with highly‐correlated electrical and elastic coupling that elicit fast and efficient collective switching. Designing domain structures with advantageous properties is difficult because the mechanisms involved in collective switching are poorly understood and difficult to investigate. Collective switching is a hierarchical process where the nano‐ and mesoscale responses control the macroscopic properties. Using chemical solution synthesis, epitaxially nearly‐relaxed (100) BaTiO3films are synthesized. Thermal strain induces a strongly‐correlated domain structure with alternating domains of polarization along the [010] and [001] in‐plane axes and 90° domain walls along the [011] or [01] directions. Simultaneous capacitance–voltage measurements and band‐excitation piezoresponse force microscopy revealed strong collective switching behavior. Using a deep convolutional autoencoder, hierarchical switching is automatically tracked and the switching pathway is identified. The collective switching velocities are calculated to be ≈500 cm s−1at 5 V (7 kV cm−1), orders‐of‐magnitude faster than expected. These combinations of properties are promising for high‐speed tunable dielectrics and low‐voltage ferroelectric memories and logic. 
    more » « less
  4. Abstract Thin ferroelectric materials hold great promise for compact nonvolatile memory and nonlinear optical and optoelectronic devices. Herein, an ultrathin in‐plane ferroelectric material that exhibits a giant nonlinear optical effect, group‐IV monochalcogenide SnSe, is reported. Nanometer‐scale ferroelectric domains with ≈90°/270° twin boundaries or ≈180° domain walls are revealed in physical‐vapor‐deposited SnSe by lateral piezoresponse force microscopy. Atomic structure characterization reveals both parallel and antiparallel stacking of neighboring van der Waals ferroelectric layers, leading to ferroelectric or antiferroelectric ordering. Ferroelectric domains exhibit giant nonlinear optical activity due to coherent enhancement of second‐harmonic fields and the as‐resulted second‐harmonic generation was observed to be 100 times more intense than monolayer WS2. This work demonstrates in‐plane ferroelectric ordering and giant nonlinear optical activity in SnSe, which paves the way for applications in on‐chip nonlinear optical components and nonvolatile memory devices. 
    more » « less
  5. Abstract Ferroelectric materials exhibit spontaneous polarization that can be switched by electric field. Beyond traditional applications as nonvolatile capacitive elements, the interplay between polarization and electronic transport in ferroelectric thin films has enabled a path to neuromorphic device applications involving resistive switching. A fundamental challenge, however, is that finite electronic conductivity may introduce considerable power dissipation and perhaps destabilize ferroelectricity itself. Here, tunable microwave frequency electronic response of domain walls injected into ferroelectric lead zirconate titanate (PbZr0.2Ti0.8O3) on the level of a single nanodomain is revealed. Tunable microwave response is detected through first‐order reversal curve spectroscopy combined with scanning microwave impedance microscopy measurements taken near 3 GHz. Contributions of film interfaces to the measured AC conduction through subtractive milling, where the film exhibited improved conduction properties after removal of surface layers, are investigated. Using statistical analysis and finite element modeling, we inferred that the mechanism of tunable microwave conductance is the variable area of the domain wall in the switching volume. These observations open the possibilities for ferroelectric memristors or volatile resistive switches, localized to several tens of nanometers and operating according to well‐defined dynamics under an applied field. 
    more » « less