Abstract Humans exist as part of social-ecological systems (SES) in which biological, physical, chemical, economic, political and other social processes are tightly interwoven. Global change within these systems presents an increasingly untenable situation for long-term human security. Further, knowledge that humans possess about ourselves and SES represents a complex amalgamation of individual and collective factors. Because of various evolutionary pressures, people often reject this complex reality in favor of more simplistic perceptions and explanations. This thought paper offers an overview of how and where people acquire knowledge and how that knowledge acquisition process reflects and influences narratives, which subsequently affect efforts to address challenges in SES. We highlight three narratives as examples of constraints on finding ways forward toward a more resilient future. Our focal narratives include tendencies to conflate tame and wicked problems; to posit a false human-nature duality; and to resist the explanatory evidence from biocultural evolution. We then discuss the human cognitive propensity to create narratives to think about how we might intentionally develop narratives that are more appropriate for living in coevolving SES.
more »
« less
Fundamental constraints to the logic of living systems
It has been argued that the historical nature of evolution makes it a highly path-dependent process. Under this view, the outcome of evolutionary dynamics could have resulted in organisms with different forms and functions. At the same time, there is ample evidence that convergence and constraints strongly limit the domain of the potential design principles that evolution can achieve. Are these limitations relevant in shaping the fabric of the possible? Here, we argue that fundamental constraints are associated with the logic of living matter. We illustrate this idea by considering the thermodynamic properties of living systems, the linear nature of molecular information, the cellular nature of the building blocks of life, multicellularity and development, the threshold nature of computations in cognitive systems and the discrete nature of the architecture of ecosystems. In all these examples, we present available evidence and suggest potential avenues towards a well-defined theoretical formulation.
more »
« less
- Award ID(s):
- 2436069
- PAR ID:
- 10599686
- Publisher / Repository:
- The Royal Society
- Date Published:
- Journal Name:
- Interface Focus
- Volume:
- 14
- Issue:
- 5
- ISSN:
- 2042-8898
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The independent evolution of gigantism among dinosaurs has been a topic of long-standing interest, but it remains unclear if gigantic theropods, the largest bipeds in the fossil record, all achieved massive sizes in the same manner, or through different strategies. We perform multi-element histological analyses on a phylogenetically broad dataset sampled from eight theropod families, with a focus on gigantic tyrannosaurids and carcharodontosaurids, to reconstruct the growth strategies of these lineages and test if particular bones consistently preserve the most complete growth record. We find that in skeletally mature gigantic theropods, weight-bearing bones consistently preserve extensive growth records, whereas non-weight-bearing bones are remodelled and less useful for growth reconstruction, contrary to the pattern observed in smaller theropods and some other dinosaur clades. We find a heterochronic pattern of growth fitting an acceleration model in tyrannosaurids, with allosauroid carcharodontosaurids better fitting a model of hypermorphosis. These divergent growth patterns appear phylogenetically constrained, representing extreme versions of the growth patterns present in smaller coelurosaurs and allosauroids, respectively. This provides the first evidence of a lack of strong mechanistic or physiological constraints on size evolution in the largest bipeds in the fossil record and evidence of one of the longest-living individual dinosaurs ever documented.more » « less
-
Abstract MotivationSimulation is an essential technique for generating biomolecular data with a ‘known’ history for use in validating phylogenetic inference and other evolutionary methods. On longer time scales, simulation supports investigations of equilibrium behavior and provides a formal framework for testing competing evolutionary hypotheses. Twenty years of molecular evolution research have produced a rich repertoire of simulation methods. However, current models do not capture the stringent constraints acting on the domain insertions, duplications, and deletions by which multidomain architectures evolve. Although these processes have the potential to generate any combination of domains, only a tiny fraction of possible domain combinations are observed in nature. Modeling these stringent constraints on domain order and co-occurrence is a fundamental challenge in domain architecture simulation that does not arise with sequence and gene family simulation. ResultsHere, we introduce a stochastic model of domain architecture evolution to simulate evolutionary trajectories that reflect the constraints on domain order and co-occurrence observed in nature. This framework is implemented in a novel domain architecture simulator, DomArchov, using the Metropolis–Hastings algorithm with data-driven transition probabilities. The use of a data-driven event module enables quick and easy redeployment of the simulator for use in different taxonomic and protein function contexts. Using empirical evaluation with metazoan datasets, we demonstrate that domain architectures simulated by DomArchov recapitulate properties of genuine domain architectures that reflect the constraints on domain order and adjacency seen in nature. This work expands the realm of evolutionary processes that are amenable to simulation. Availability and implementationDomArchov is written in Python 3 and is available at http://www.cs.cmu.edu/~durand/DomArchov. The data underlying this article are available via the same link. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
-
null (Ed.)Abstract Biomimicry, biomimesis and bioinspiration define distinctly different approaches for deepening the understanding of how living systems work and employing this knowledge to meet pressing demands in engineering. Biomimicry involves shear imitation of biological structures that most often do not reproduce the functionality that they have while in the living organisms. Biomimesis aims at reproduction of biological structure-function relationships and advances our knowledge of how different components of complex living systems work. Bioinspiration employs this knowledge in abiotic manners that are optimal for targeted applications. This article introduces and reviews these concepts in a global historic perspective. Representative examples from charge-transfer science and solar-energy engineering illustrate the evolution from biomimetic to bioinspired approaches and show their importance. Bioinspired molecular electrets, aiming at exploration of dipole effects on charge transfer, demonstrate the pintail impacts of biological inspiration that reach beyond its high utilitarian values. The abiotic character of bioinspiration opens doors for the emergence of unprecedented properties and phenomena, beyond what nature can offer.more » « less
-
The industrial revolution of the 19th century marked the onset of an era of machines and robots that transformed societies. Since the beginning of the 21st century, a new generation of robots envisions similar societal transformation. These robots are biohybrid: part living and part engineered. They may self-assemble and emerge from complex interactions between living cells. While this new era of living robots presents unprecedented opportunities for positive societal impact, it also poses a host of ethical challenges. A systematic, nuanced examination of these ethical issues is of paramount importance to guide the evolution of this nascent field. Multidisciplinary fields face the challenge that inertia around collective action to address ethical boundaries may result in unexpected consequences for researchers and societies alike. In this Perspective, we i) clarify the ethical challenges associated with biohybrid robotics, ii) discuss the need for and elements of a potential governance framework tailored to this technology; and iii) propose tangible steps toward ethical compliance and policy formation in the field of biohybrid robotics.more » « less
An official website of the United States government

