skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Underwater Acoustics for All: Expanding Capacity with Education and Low-Cost Sensors
Sound is a persistent yet dynamic component of the marine environment, reflecting both physical and biological properties. Whereas light can only travel tens of meters in the ocean, sound is able to travel tens to thousands of kilometers under certain conditions, revealing information at specific times and places. In addition, underwater sound provides opportunities for sustainable development and blue economy growth that aren’t readily available with other technologies. For example, the melting rate of Arctic ice and the health of coral reefs can be estimated from acoustic measurements (Becker et al., 2023). However, underwater acoustics is a complex topic, requiring specialized education and equipment. To expand the capacity of underwater acousticians requires dedicated educational opportunities and low-cost equipment and analysis resources.  more » « less
Award ID(s):
2318309
PAR ID:
10599694
Author(s) / Creator(s):
; ; ; ; ; ; ;
Corporate Creator(s):
Publisher / Repository:
The Oceanography Society
Date Published:
Journal Name:
Oceanography
ISSN:
1042-8275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The time-dependent spectral characteristics of underwater sound radiated by an ocean vessel has complex dependencies on ship machinery, propeller dynamics, hydrodynamics of ship exhaust and motion, as well as ship board activities. Here the underwater sound radiated by a ship equipped with a controllable pitch propeller (CPP) is analyzed and quantified via its (i) power spectral density for signal energetics, (ii) temporal coherence for machinery tonal sound, and (iii) spectral coherence for propeller amplitude-modulated cavitation noise. Frequency-modulated (FM) tonal signals are also characterized in terms of their frequency variations. These characteristics are compared for different propeller pitch ratios ranging from 20% to 82% at fixed propeller revolutions per minute (RPM). The efficacy and robustness of ship parameter estimation at different pitches are discussed. Finally, analysis of one special measurement is provided, when ship changes speed, propeller pitch and RPM over the duration of the measurement. The 50% pitch is found to be a crucial point for this ship about which tonal characteristics of its underwater radiated sound attain their peak values, while broadband sound and associated spectral coherences are at a minimum. The findings here elucidate the effects of pitch variation on underwater sound radiated by ships with controllable pitch propellers and has applications in ship design and underwater noise mitigation. 
    more » « less
  2. Metamaterials have offered unprecedented potentials for wave manipulations. However, their applications in underwater acoustic wave control have remained largely unexplored. This is because of the limited material choices and the lack of reliable fabrication techniques for the complicated structures. Herein, a metamaterial with microlattice structures as the building blocks is proposed for underwater operations. By designing the building blocks of the metamaterial and assembling them in a layered fashion, anisotropy is embedded in the structure, which results along different effective sound speeds in orthogonal directions. The designed metamaterial is fabricated by metal additive manufacturing using aluminum and steel. Experiments are performed using a resonator tube to evaluate its performance in water. An anisotropy ratio of around 2 is achieved, which is in good agreement with numerical simulations. The proposed metamaterial provides an effective means for underwater sound control with reduced fabrication difficulties and increased service life. 
    more » « less
  3. Abstract Rain in tropical cyclones is studied using eight time series of underwater ambient sound at 40–50 kHz with wind speeds up to 45 m s−1beneath three tropical cyclones. At tropical cyclone wind speeds, rain- and wind-generated sound levels are comparable, and therefore rain cannot be detected by sound level alone. A rain detection algorithm that is based on the variations of 5–30-kHz sound levels with periods longer than 20 s and shorter than 30 min is proposed. Faster fluctuations (<20 s) are primarily due to wave breaking, and slower ones (>30 min) are due to overall wind variations. Higher-frequency sound (>30 kHz) is strongly attenuated by bubble clouds. This approach is supported by observations that, for wind speeds < 40 m s−1, the variation in sound level is much larger than that expected from observed wind variations and is roughly comparable to that expected from rain variations. The hydrophone results are consistent with rain estimates by the Tropical Rainfall Measuring Mission (TRMM) satellite and with Stepped-Frequency Microwave Radiometer (SFMR) and radar estimates by surveillance flights. The observations indicate that the rain-generated sound fluctuations have broadband acoustic spectra centered around 10 kHz. Acoustically detected rain events usually last for a few minutes. The data used in this study are insufficient to produce useful estimation of rain rate from ambient sound because of limited quantity and accuracy of the validation data. The frequency dependence of sound variations suggests that quantitative rainfall algorithms from ambient sound may be developed using multiple sound frequencies. Significance StatementRain is an indispensable process in forecasting the intensity and path of tropical cyclones. However, its role in the air–sea interaction is still poorly understood, and its parameterization in numerical models is still in development. In this work, we analyzed sound measurements made by hydrophones on board Lagrangian floats beneath tropical cyclones. We find that wind, rain, and breaking waves each have distinctive signatures in underwater ambient sound. We suggest that the air–sea dynamic processes in tropical cyclones can be explored by listening to ambient sound using hydrophones beneath the sea surface. 
    more » « less
  4. Experiments show that tensile cracks can travel above the speed of sound 
    more » « less
  5. The underwater noise emission from glacier calving is investigated by integrating acoustic and photographic observations made in a glacial bay and model pool. Similarities in the impact noise in these two settings are identified. Distinct fluid-dynamics processes are involved in sound generation: iceberg detachment, water entry, entrainment and collective oscillation of a bubble cloud, secondary impacts due to splashes, and calving-induced wave action. The lag between initial impact and bubble plume pinch-off from the subsurface cavity depends on ice block dimensions and drop height and may be useful in reducing errors in estimates of calving fluxes made using underwater sound. 
    more » « less