Objectives:Interest plays a central role in learning by shaping what, how, when, where, and why learning occurs. In data science education, where complex concepts, lived experiences, and practical skills intersect, capturing and cultivating student interest can be especially generative. This work explores approaches for designing and evaluating interest-driven data science instructional materials.Methods:This paper presents a participatory design study that informs the development of a data science curriculum for high school students. To assess how well learner interests and values are reflected in the resulting curriculum, we used the Integrated Interest Development for Computing Education Framework [56], which provides a concrete operationalization of interest that captures its multifaceted nature.Findings:The paper demonstrates and discusses how participatory design can be used to identify students’ interests and how those interests can be used to inform the creation of an interest-driven curriculum. Further, it highlights how different types of participatory design activities yield insight into different facets of students’ interests and identities, which can then be used to design learning experiences. This work shows how the resulting PD reflects and harnesses the multifaceted nature of student interest and how it can be leveraged to design learning experiences that connect with learners’ lived digital experiences.Conclusions:Participatory design is an effective student-centered approach for tailoring computational learning experiences aligned to students’ voices, values, and interests. The use of various participatory design activities revealed different facets of students’ interests that informed the creation of an interest-driven curriculum that could not have been created without the input of the students themselves.
more »
« less
Examining Science Teachers’ Conceptions of Student Interest as a Consideration in Designing Assessments
A key goal of science education articulated in A Framework for K-12 Science Education is to create opportunities for students to answer questions about the world that connect to their interests, experiences, and identities. Interest can be seen as a malleable relationship between a person and object (such a phenomenon students might study). In this paper, we analyzed data from a design study of an online course focused on preparing 11 secondary teachers to design three-dimensional tasks that align to the Next Generation Science Standards and that connect to students’ interests. Our data sources were teachers’ descriptions of their design decisions about what phenomena to use to anchor assessment, designed assessment tasks, and interviews with them about those decisions. We found that interest was an important consideration for assessment design, but they considered student interests in different ways. Some teachers shifted their views of what it meant to engage student interests in the context of assessment design over the course of their participation in professional learning. Most teachers made decisions about what they believed their students were interested in based on their knowledge of students or beliefs about their students’ interests. In supporting teachers to design summative assessments that link to students’ interest, it is critical to assume teachers bring a range of conceptions of interest, and to consider the feasibility and utility of task design tools from teachers’ point of view.
more »
« less
- Award ID(s):
- 2010086
- PAR ID:
- 10599768
- Publisher / Repository:
- Taylor and Francis
- Date Published:
- Journal Name:
- Journal of Science Teacher Education
- ISSN:
- 1046-560X
- Page Range / eLocation ID:
- 1 to 21
- Subject(s) / Keyword(s):
- assessment design NGSS interest secondary science
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Research on K-12 integrated STEM settings suggests that engineering design activities play an important role in supporting students’ science learning. Moreover, the National Academies of Sciences, Engineering, and Medicine named improvement in science achievement as an objective of K-12 engineering education. Despite promising findings and the theorized importance of engineering education on science learning, there is little literature that investigates the impact of independent engineering design courses on students’ science learning at the high school level. This sparse exploration motivates our work-in-progress study, which explores the impact of high school students’ exposure to engineering design curriculum on their interest in science through a semi-structured student focus group method. This study is a part of a National Science Foundation-funded project that investigates the implementation of [de-identified program], a yearlong high school course that introduces students across the United States to engineering design principles. The Fall 2020 student focus group protocol built on the [de-identified program] 2019-2020 protocol with the addition of a science interest item to the existing engineering self-efficacy and interest items. Approximately thirty-minute semi-structured student focus groups were conducted and recorded via Zoom, then the transcripts and notes were analyzed using an in-vivo coding method. Our preliminary findings suggest that future studies should aim to gain a deeper understanding of the influence standalone engineering design courses have on students’ science interests and explore the role engineering design teachers play in increasing students’ interest in science.more » « less
-
The Billion Oyster Project and Curriculum and Community Enterprise for the Restoration of New York Harbor with New York City Public Schools (BOP-CCERS) program is a National Science Foundation (NSF) supported initiative and collaboration of multiple institutions and organizations led by Pace University. The NSF project, Innovative Technology Experiences for Students and Teachers (ITEST), had generated a large amount of data through engagement with teachers and students throughout New York City public schools. This article presents the second part to a large data collection study with focus on Underrepresented Minority (URM) student interest in STEM and engagement with teachers to support them in teaching science through experiential learning and lessons that connect science to the real world, particularly through science in the New York Harbor. The first component of the study focused on URM student interest in STEM. This second component of the study focuses on teacher engagement in the program, and what the researchers had learned in the process. Overall, teachers reported very favorable options on the impact of the BOP-CCERS activities as ways to generate student interest in STEM majors and careers. Teacher participants were generally positive about the amount of support and resources they received as members of the project, as well as the oyster-related knowledge and practices they learned to use with their own students in oyster field research. Data from the study provided evidence that the teacher activities were successful and met the project’s goals to provide support and resources for teachers to engage students in oyster restoration research.more » « less
-
Abstract Preservice secondary science teachers often experience science learning in narrow and marginalizing ways in their science preparation. These experiences cause harm, particularly for preservice teachers of color. They also limit the disciplinary resources they can develop for later teaching science in ways that value and sustain their students' ways of knowing and being in the world. Our research explores possibilities for cultivating new spaces for preservice secondary science teachers to engage in science. In a content‐focused education course, we designed for and studied preservice teachers' engagement in expansive and connective sensemaking, incorporating heterogeneity, power, and historicity in pursuits of explanatory accounts of the natural world. In this article, we examined how this course design can support preservice teachers to attune to heterogeneity in ways of knowing in science and to connect to identity and historicity in scientific sensemaking. Our analysis suggests that students' final projects reflected attunements to diverse knowing, communicating, and relating in science and deep connections with their identities and future‐making, yet had fewer connections to sociohistorical narratives and structures. We developed illustrative case studies of four student projects, highlighting the personal, social, and political possibilities of creating space for future educators to imagine more expansive and connective forms of science. This study contributes a novel model for preservice science teacher education to support teacher learning to value and sustain their students' ways of knowing and being in the world.more » « less
-
Engineering education, with its focus on design and problem solving, has been shown to be fertile ground for encouraging students’ further development of their fundamental math and science skills in a way that they find relevant and engaging, and for promoting interest in STEM more broadly. To capitalize on these positive aspects of the engineering context, researchers developed, implemented, and studied a three-year engineering curriculum for grades 6 – 8 that utilizes the engineering design process and problem-based learning. In this semester-long elective course, students work through a series of design challenges within a given context (a carnival, airplanes and flight, and robotics, respectively, for 6th, 7th and 8th grades) and learn engineering content as well as practice fundamental math and science skills. This curriculum was developed and researched as part of an earlier project; in that work, course participation was linked with increased academic achievement on state-wide math and science assessments as well as heightened cognitive and behavioral engagement in STEM and science interest [1]. The current work seeks to replicate the findings of this earlier study in a different and larger school district while a) expanding the research foci to include teacher training and teachers’ pedagogical content knowledge and b) refining the curriculum materials including the teacher website and support materials. In this paper, we present the research strand focusing on the impact of the course on students’ attitudinal factors including engagement, science interest, and science and math anxiety. These factors were measured in each semester-long course using a pre-post survey design. Survey items are primarily from validated instruments and are similar to those used in prior research on this curriculum and its impact on students; prior research demonstrated good reliability, with alpha values ranging from 0.84 to 0.91 for each construct [1]. We compare students’ levels of engagement, science interest, and math and science anxiety at the pre and post time points to understand whether and how participating in the course influences their standing on these variables. . Open-ended survey items were used as a supplementary data source. The preliminary results from the first year of implementation (2022-2023 academic year) suggest that similar to the original study, there is an increase across some of the student constructs, including student engagement. This finding was also supported by engineering teachers’ input about student engagement in the classroom. As the study progresses into its planned 2nd and 3rd years of curriculum implementation, we will be able to further discern the extent to which multiple years of course enrollment might differentially impact the attitudinal factors of interest (i.e., dosage effects).more » « less
An official website of the United States government

