skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: HLH ‐30/ TFEB Rewires the Chaperone Network to Promote Proteostasis Upon Perturbations to the Coenzyme A and Iron–Sulfur Cluster Biosynthesis Pathways
ABSTRACT The maintenance of a properly folded proteome is critical for cellular function and organismal health, and its age‐dependent collapse is associated with a wide range of diseases. Here, we find that despite the central role of Coenzyme A as a molecular cofactor in hundreds of cellular reactions, inhibition of the first and rate‐limiting step in CoA biosynthesis can be beneficial and promote proteostasis. Impairment of the cytosolic iron–sulfur cluster formation pathway, which depends on Coenzyme A, similarly promotes proteostasis and acts in the same pathway. Proteostasis improvement by interference with the Coenzyme A/iron–sulfur cluster biosynthesis pathways is dependent on the conserved HLH‐30/TFEB transcription factor. Strikingly, under these conditions, HLH‐30 promotes proteostasis by potentiating the expression of select chaperone genes, providing a chaperone‐mediated proteostasis shield, rather than by its established role as an autophagy and lysosome biogenesis‐promoting factor. This reflects the versatile nature of this conserved transcription factor, which can transcriptionally activate a wide range of protein quality control mechanisms, including chaperones and stress response genes alongside autophagy and lysosome biogenesis genes. These results highlight TFEB as a key proteostasis‐promoting transcription factor and underscore it and its upstream regulators as potential therapeutic targets in proteostasis‐related diseases.  more » « less
Award ID(s):
2223241
PAR ID:
10599854
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Aging Cell
Volume:
24
Issue:
6
ISSN:
1474-9718
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. INTRODUCTION Eukaryotes contain a highly conserved signaling pathway that becomes rapidly activated when adenosine triphosphate (ATP) levels decrease, as happens during conditions of nutrient shortage or mitochondrial dysfunction. The adenosine monophosphate (AMP)–activated protein kinase (AMPK) is activated within minutes of energetic stress and phosphorylates a limited number of substrates to biochemically rewire metabolism from an anabolic state to a catabolic state to restore metabolic homeostasis. AMPK also promotes prolonged metabolic adaptation through transcriptional changes, decreasing biosynthetic genes while increasing expression of genes promoting lysosomal and mitochondrial biogenesis. The transcription factor EB (TFEB) is a well-appreciated effector of AMPK-dependent signals, but many of the molecular details of how AMPK controls these processes remain unknown. RATIONALE The requirement of AMPK and its specific downstream targets that control aspects of the transcriptional adaptation of metabolism remain largely undefined. We performed time courses examining gene expression changes after various mitochondrial stresses in wild-type (WT) or AMPK knockout cells. We hypothesized that a previously described interacting protein of AMPK, folliculin-interacting protein 1 (FNIP1), may be involved in how AMPK promotes increases in gene expression after metabolic stress. FNIP1 forms a complex with the protein folliculin (FLCN), together acting as a guanosine triphosphate (GTP)–activating protein (GAP) for RagC. The FNIP1-FLCN complex has emerged as an amino acid sensor to the mechanistic target of rapamycin complex 1 (mTORC1), involved in how amino acids control TFEB activation. We therefore examined whether AMPK may regulate FNIP1 to dominantly control TFEB independently of amino acids. RESULTS AMPK was found to govern expression of a core set of genes after various mitochondrial stresses. Hallmark features of this response were activation of TFEB and increases in the transcription of genes specifying lysosomal and mitochondrial biogenesis. AMPK directly phosphorylated five conserved serine residues in FNIP1, suppressing the function of the FLCN-FNIP1 GAP complex, which resulted in dissociation of RagC and mTOR from the lysosome, promoting nuclear translocation of TFEB even in the presence of amino acids. FNIP1 phosphorylation was required for AMPK to activate TFEB and for subsequent increases in peroxisome proliferation–activated receptor gamma coactivator 1-alpha (PGC1α) and estrogen-related receptor alpha (ERRα) mRNAs. Cells in which the five serines in FNIP1 were mutated to alanine were unable to increase lysosomal and mitochondrial gene expression programs after treatment with mitochondrial poisons or AMPK activators despite the presence and normal regulation of all other substrates of AMPK. By contrast, neither AMPK nor its control of FNIP1 were needed for activation of TFEB after amino acid withdrawal, illustrating the specificity to energy-limited conditions. CONCLUSION Our data establish FNIP1 as the long-sought substrate of AMPK that controls TFEB translocation to the nucleus, defining AMPK phosphorylation of FNIP1 as a singular event required for increased lysosomal and mitochondrial gene expression programs after metabolic stresses. This study also illuminates the larger biological question of how mitochondrial damage triggers a temporal response of repair and replacement of damaged mitochondria: Within early hours, AMPK-FNIP1–activated TFEB induces a wave of lysosome and autophagy genes to promote degradation of damaged mitochondria, and a few hours later, TFEB–up-regulated PGC1⍺ and ERR⍺ promote expression of a second wave of genes specifying mitochondrial biogenesis. These insights open therapeutic avenues for several common diseases associated with mitochondrial dysfunction, ranging from neurodegeneration to type 2 diabetes to cancer. Mitochondrial damage activates AMPK to phosphorylate FNIP1, stimulating TFEB translocation to the nucleus and sequential waves of lysosomal and mitochondrial biogenesis. After mitochondrial damage, activated AMPK phosphorylates FNIP1 (1), causing inhibition of FLCN-FNIP1 GAP activity (2). This leads to accumulation of RagC in its GTP-bound form, causing dissociation of RagC, mTORC1, and TFEB from the lysosome (3). TFEB is therefore not phosphorylated and translocates to the nucleus, inducing transcription of lysosomal or autophagy genes, with parallel increases in NT-PGC1α mRNA (4), which, in concert with ERRα (5), subsequently induces mitochondrial biogenesis (6). CCCP, carbonyl cyanide m-chlorophenylhydrazone; CLEAR, coordinated lysosomal expression and regulation; GDP, guanosine diphosphate; P, phosphorylation. [Figure created using BioRender] 
    more » « less
  2. Ginsberg, Stephen D. (Ed.)
    Lysosomes play important roles in catabolism, nutrient sensing, metabolic signaling, and homeostasis. NPC1 deficiency disrupts lysosomal function by inducing cholesterol accumulation that leads to early neurodegeneration in Niemann-Pick type C (NPC) disease. Mitochondria pathology and deficits in NPC1 deficient cells are associated with impaired lysosomal proteolysis and metabolic signaling. It is thought that activation of the transcription factor TFEB, an inducer of lysosome biogenesis, restores lysosomal-autophagy activity in lysosomal storage disorders. Here, we investigated the effect of trehalose, a TFEB activator, in the mitochondria pathology of NPC1 mutant fibroblastsin vitroand in mouse developmental Purkinje cellsex vivo. We found that in NPC1 mutant fibroblasts, serum starvation or/and trehalose treatment, both activators of TFEB, reversed mitochondria fragmentation to a more tubular mitochondrion. Trehalose treatment also decreased the accumulation of Filipin+cholesterol in NPC1 mutant fibroblasts. However, trehalose treatment in cerebellar organotypic slices (COSCs) from wild-type andNpc1nmf164mice caused mitochondria fragmentation and lack of dendritic growth and degeneration in developmental Purkinje cells. Our data suggest, that although trehalose successfully restores mitochondria length and decreases cholesterol accumulation in NPC1 mutant fibroblasts, in COSCs, Purkinje cells mitochondria and dendritic growth are negatively affected possibly through the overactivation of the TFEB-lysosomal-autophagy pathway. 
    more » « less
  3. Abstract BackgroundAntarctic fishes of the Notothenioidei suborder constitutively upregulate multiple inducible chaperones, a highly derived adaptation that preserves proteostasis in extreme cold, and represent a system for studying the evolution of gene frontloading. We screened forHsf1-binding sites, asHsf1is a master transcription factor of the heat shock response, and highly-conserved non-coding elements within proximal promoters of chaperone genes across 10 Antarctic notothens, 2 subpolar notothens, and 17 perciform fishes. We employed phylogenetic models of molecular evolution to determine whether (i) changes in motifs associated withHsf1-binding and/or (ii) relaxed purifying selection or exaptation at ancestralcis-regulatory elements coincided with the evolution of chaperone frontloading in Antarctic notothens. ResultsAntarctic notothens exhibited significantly fewerHsf1-binding sites per bp at chaperone promoters than subpolar notothens and Serranoidei, the most closely-related suborder to Notothenioidei included in this study. 90% of chaperone promoters exhibited accelerated substitution rates among Antarctic notothens relative to other perciformes. The proportion of bases undergoing accelerated evolution (i) was significantly greater in Antarctic notothens than in subpolar notothens and Perciformes in 70% of chaperone genes and (ii) increased among bases that were more conserved among perciformes. Lastly, we detected evidence of relaxed purifying selection and exaptation acting on ancestrally conservedcis-regulatory elements in the Antarctic notothen lineage and its major branches. ConclusionA large degree of turnover has occurred in Notothenioidei at chaperone promoter regions that are conserved among perciform fishes following adaptation to the cooling of the Southern Ocean. Additionally, derived reductions inHsf1-binding site frequency suggestcis-regulatory modifications to the classical heat shock response. Of note, turnover events within chaperone promoters were less frequent in the ancestral node of Antarctic notothens relative to younger Antarctic lineages. This suggests thatcis-regulatory divergence at chaperone promoters may be greater between Antarctic notothen lineages than between subpolar and Antarctic clades. These findings demonstrate that strong selective forces have acted uponcis-regulatory elements of chaperone genes among Antarctic notothens. 
    more » « less
  4. Fidelity of protein targeting is essential for the proper biogenesis and functioning of organelles. Unlike replication, transcription and translation processes, in which multiple mechanisms to recognize and reject noncognate substrates are established in energetic and molecular detail, the mechanisms by which cells achieve a high fidelity in protein localization remain incompletely understood. Signal recognition particle (SRP), a conserved pathway to mediate the localization of membrane and secretory proteins to the appropriate cellular membrane, provides a paradigm to understand the molecular basis of protein localization in the cell. In this chapter, we review recent progress in deciphering the molecular mechanisms and substrate selection of the mammalian SRP pathway, with an emphasis on the key role of the cotranslational chaperone NAC in preventing protein mistargeting to the ER and in ensuring the organelle specificity of protein localization. 
    more » « less
  5. Abstract Bacteria contain conserved mechanisms to control the intracellular levels of metal ions. Metalloregulatory transcription factors bind metal cations and play a central role in regulating gene expression of metal transporters. Often, these transcription factors regulate transcription by binding to a specific DNA sequence in the promoter region of target genes. Understanding the preferred DNA‐binding sequence for transcriptional regulators can help uncover novel gene targets and provide insight into the biological role of the transcription factor in the host organism. Here, we identify consensus DNA‐binding sequences and subsequent transcription regulatory networks for two metalloregulators from the ferric uptake regulator (FUR) and diphtheria toxin repressor (DtxR) superfamilies inThermus thermophilusHB8. By homology search, we classify the DtxR homolog as a manganese‐specific, MntR (TtMntR), and the FUR homolog as a peroxide‐sensing, PerR (TtPerR). Both transcription factors repress separate ZIP transporter genes in vivo, andTtPerR acts as a bifunctional transcription regulator by activating the expression of ferric and hemin transport systems. We showTtPerR andTtMntR bind DNA in the presence of manganese in vitro and in vivo; however,TtPerR is unable to bind DNA in the presence of iron, likely due to iron‐mediated histidine oxidation. Unlike canonical PerR homologs,TtPerR does not appear to contribute to peroxide detoxification. Instead, theTtPerR regulon and DNA binding sequence are more reminiscent of Fur or Mur homologs. Collectively, these results highlight the similarities and differences between two metalloregulatory superfamilies and underscore the interplay of manganese and iron in transcription factor regulation. 
    more » « less